JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Measuring Liver Mitochondrial Oxygen Consumption and Proton Leak Kinetics to Estimate Mitochondrial Respiration in Holstein Dairy Cattle

Published: November 30th, 2018



1Veterinary Medicine Teaching and Research Center, University of California Davis, 2Archer Daniels Midland, 3Department of Molecular Biosciences, University of California Davis

Here, we share methods for measuring mitochondrial oxygen consumption, a defining concept of nutritional energetics, and proton leak, the primary cause of inefficiency in mitochondrial generation of ATP. These results can account for 30% of the energy lost in nutrient utilization to help evaluate mitochondrial function.

Oxygen consumption, proton motive force (PMF) and proton leak are measurements of mitochondrial respiration, or how well mitochondria are able to convert NADH and FADH into ATP. Since mitochondria are also the primary site for oxygen use and nutrient oxidation to carbon dioxide and water, how efficiently they use oxygen and produce ATP directly relates to the efficiency of nutrient metabolism, nutrient requirements of the animal, and health of the animal. The purpose of this method is to examine mitochondrial respiration, which can be used to examine the effects of different drugs, diets and environmental effects on mitochondrial metabolism. Results include oxygen consumption measured as proton dependent respiration (State 3) and proton leak dependent respiration (State 4). The ratio of State 3 / State 4 respiration is defined as respiratory control ratio (RCR) and can represent mitochondrial energetic efficiency. Mitochondrial proton leak is a process that allows dissipation of mitochondrial membrane potential (MMP) by uncoupling oxidative phosphorylation from ADP decreasing the efficiency of ATP synthesis. Oxygen and TRMP+ sensitive electrodes with mitochondrial substrates and electron transport chain inhibitors are used to measure State 3 and State 4 respiration, mitochondrial membrane PMF (or the potential to produce ATP) and proton leak. Limitations to this method are that liver tissue must be as fresh as possible and all biopsies and assays must be performed in less than 10 h. This limits the number of samples that can be collected and processed by a single person in a day to approximately 5. However, only 1 g of liver tissue is needed, so in large animals, such as dairy cattle, the amount of sample needed is small relative to liver size and there is little recovery time needed.

Mitochondria are very sensitive to stress and their cellular environment can contribute to a wide variety of metabolic diseases. Oxygen consumption and proton leak in mitochondria are indicators of mitochondria health. The methods described in this paper estimate mitochondrial energy efficiency using RCR based on oxygen consumption with and without proton leak. These results can account for 30% of the energy lost in nutrient utilization1. Changes in oxygen consumption and proton leak can identify mitochondrial dysfunction which contributes to metabolic disease and results in decreased energy efficiency. These methods can also be used to examine....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All methods, protocol and studies described here were approved by the Institutional Animal Care and Use Committee (IACUC) of University of California, Davis.

1. Obtaining a Liver Biopsy from a Holstein Dairy Cow

NOTE: A liver biopsy should be performed by a licensed veterinarian. Liver biopsies can be performed on the dairy site where the cows are located. Lactating dairy cows can continue to be milked normally and milk does not need to be withdrawn from the food supp.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Positive results showing RCR and proton leak kinetics are shown in Table 1 and Figure 15, respectively. In this study7, RCR and protein leak kinetics were measured in Holstein dairy cows at 70 days in milk after cows had been fed 1 of 5 different levels of Cu, Zn and Mn for 28 days. State 4, maximum proton leak-dependent respiration, had a tendency to be affected by mineral intake of Cu, Mn and Zn (p < 0.1.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The most critical point in the protocol is obtaining a representative liver tissue sample and beginning the isolation of mitochondria as soon as possible after biopsy. Variation in respiration measurements is low (Table 1) due to a short transport time from cow to laboratory. To reduce transport time, a small laboratory was set up in the office of the dairy, and liver samples were driven to the office laboratory as each was collected so that mitochondria were isolated within 10 min of biopsy. Setup and t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This research was supported by Alltech and USDA Hatch funds through the Center for Food Animal Health at UC Davis School of Veterinary Medicine.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Liver Biopsy
Schackelford-Courtney bovine liver biopsy instrument Sontec Instruments Englewood CO 1103-904
Suture Fisher Scientific 19-037-516
Suture needles NA NA Included with Suture
Scalpels Sigma - Aldrich S2896 / S2646 # for handle and blades
Surgery towels Fisher Scientific 50-129-6667
Falcon tubes 50 mL Fisher Scientific 14-432-22
Tweezers Sigma - Aldrich Z168750
50 mL syringes Fisher Scientific 22-314387
Injection needles (22, 2 1/2) VWR MJ8881-200342
Cow halter Tractor Supply Co. 101966599
Cotton swabbing Fisher Scientific 14-959-102
cotton gauze squares (4x4) Fisher Scientific 22-246069
Medical scissors Sigma - Aldrich Z265969
Coccidiosis Vaccine 0.75 bottle/cow Provided by Veterinarian
Clostridia Vaccine Provided by Veterinarian
Liver biopsy antibiotics excenel 2 cc/100 lbs for 3 days Provided by Veterinarian
Providone Scrub Aspen Veteterinary Resources 21260221
Ethanol 70% Sigma - Aldrich 793213
Xylazine hydrochloride 100 mg/mL IV at 0.010-0.015 mg/kg bodyweight Provided by Veterinarian
2% lidocaine HCl (10-15 mL) Provided by Veterinarian
1 mg/kg IV injection of flunixin meglumine Provided by Veterinarian
Isolation of Mitochondria (liver)
Wheaton vial 30 mL with a Teflon pestle of 0.16 mm clearance Fisher Scientific 02-911-527
Homogenizer Motor Cole Parmer EW-04369-10
Homogenizer Probe Cole Parmer EW-04468-22
Auto Pipette (10 mL) Cole Parmer SK-21600-74
Beaker (500 mL) with ice Fisher Scientific FB100600
Refrigerated microfuge Fisher Scientific 75-002-441EW3
Microfuge tubes (1.5 mL) Fisher Scientific AM12400
Bicinchoninic acid (BCA) protein assay kit (microplates for plate reader) abcam ab102536
Sucrose Sigma - Aldrich S7903-1KG
Tris-HCl Sigma - Aldrich T1503-1KG
EDTA Sigma - Aldrich EDS-1KG
BSA (fatty acid free) Sigma - Aldrich A7030-50G
Mannitol Sigma - Aldrich M4125-1KG
Deionized water Sigma - Aldrich 38796
Hepes Sigma - Aldrich H3375-500G
Use to create mitochondria isolation media: 220 mM mannitol, 70 mM sucrose, 20 mM HEPES, 20 mM Tris-HCl, 1 mM EDTA, and 0.1% (w/v) fatty acid free BSA,  pH 7.4 at 4 °C, will last 2 days in refrigerator
Mitochondrial Oxygen Comsuption
Oxygraph Setup + Clark type oxygen electrode Hansatech (PP Systems) OXY1
Thermoregulated Water Pump ADInstruments MLE2001
Clark type Oxygen electrode NA NA
Autopipette (1 mL) Cole Parmer SK-21600-70 Included with Oxy1
Small magnetic stir bar Fisher Scientific 14-513-95
Micropipette (10 μL) Cole Parmer SK-21600-60
pH meter VWR
KCl Sigma - Aldrich P9333-1KG
Hepes Sigma - Aldrich H3375-500G
KH2PO4 Sigma - Aldrich P5655-1KG
MgCl2 Sigma - Aldrich M1028-100ML
EGTA Sigma - Aldrich E3889-100G
Use to make mitochondrial oxygen consumption media: 120 mM KCL, 5 mM KH2PO4, 5 mM MgCl2, 5 mM Hepes and 1 mM EGTA,  pH 7.4 at 30 °C with 0.3% defatted BSA
Rotenone (4 mM solution) Sigma - Aldrich R8875-5G
Succinate (1 M solution) Sigma - Aldrich S3674-250G
ADP (100 mM solution) Sigma - Aldrich A5285-1G
Oligomycin (solution of 8 μg/mL in ethanol) Sigma - Aldrich 75351
FCCP Sigma - Aldrich C2920
Mitochondrial Membrane Potential and Proton Motive Force
TPMP electrode World Precision Instruments. DRIREF-2
Chemicals-solutions do not need to be fresh but they do need to be kept in a freezer between runs
Malonate (0.1 mM solution) Sigma - Aldrich M1296
Oligomycin (8 μg/mL in ethanol), keep in freezer Sigma - Aldrich 75351
Nigericin (80 ng/mL in ethanol), keep in freezer Sigma - Aldrich N7143
FCCP Sigma - Aldrich C3920
TPMP Sigma - Aldrich T200
TPMP solution: 10 mM TPMP, 120 mM KCL, 5 mM Hepes and 1 mM EGTA,  pH 7.4 at 30 °C with 0.3% defatted BSA

  1. Brand, M. D., Divakaruni, A. S. The regulation and physiology of mitochondrial proton leak. Physiology. 26, 192-205 (2011).
  2. Stephenson, E. J., Hawley, J. A. Mitochondrial function in metabolic health: A genetic and environmental tug of war. Biochimica et Biophysica Acta. 1840, 1285-1294 (2014).
  3. Bartlett, K., Eaton, S. Mitochondrial B oxidation. European Journal of Biochemistry. 271, 462-469 (2004).
  4. Acetoze, G., Kurzbard, R., Klasing, K. C., Ramsey, J. J., Rossow, H. A. Oxygen Consumption, Respiratory Control Ratio (RCR) and Mitochondrial Proton Leak of broilers with and without growth enhancing levels of minerals supplementation challenged with Eimeria maxima (Ei). Journal of Animal Physiology and Animal Nutrition. 101, e210-e215 (2016).
  5. Wallace, D. C., Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion. 10, 12-31 (2010).
  6. Paradies, G., Petrosillo, G., Paradies, V., Ruggiero, F. M. Oxidative stress, mitochondrial bioenergetics and cardiolipin in aging. Free Radicals in Biology and Medicine. 48, 1286-1295 (2010).
  7. Acetoze, G., Champagne, J., Ramsey, J. J., Rossow, H. A. Liver mitochondrial oxygen consumption and efficiency of milk production in lactating Holstein cows supplemented with Copper, Manganese and Zinc. Journal of Animal Physiology Animal Nutrition. 102, e787-e797 (2017).
  8. Brown, D. R., DeNise, S. K., McDaniel, R. G. Mitochondrial respiratory metabolism and performance of cattle. Journal of Animal Science. 66, 1347-1354 (1988).
  9. Golden, M. S., Keisler, J. W., H, D. The relationship between mitochondrial function and residual feed intake in Angus steers. Journal of Animal Science. 84, 861-865 (2006).
  10. Lancaster, P. A., Carstens, G. E., Michal, J. J., Brennan, K. M., Johnson, K. A., Davis, M. E. Relationships between residual feed intake and hepatic mitochondrial function in growing beef cattle. Journal of Animal Science. 92, 3134-3141 (2014).
  11. Acetoze, G., Weber, K. L., Ramsey, J. J., Rossow, H. A. Relationship between liver mitochondrial respiration and proton leak kinetics in low and high RFI steers from two lineages of RFI Angus bulls. ISRN Vet Sci. 2015 (194014), (2015).
  12. Halliwell, B., Gutteridge, J. M. C. Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity. Free Radicals in Biology and Medicine. , 186-187 (1989).
  13. National Research Council. . Nutrient Requirements of Dairy Cattle. , (2001).
  14. Ramsey, J. J., Harper, M. E., Weindruch, R. Restriction of energy intake, energy expenditure, and aging. Free Radical Biology and Medicine. 29, 946-968 (2000).
  15. Mehta, M. M., Weinberg, S. E., Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nature. 17, 608-620 (2017).
  16. Kirby, D. M., Thorburn, D. R., Turnbull, D. M., Taylor, R. W. Biochemical assays of respiratory chain complex activity. Methods in Cell Biology. 80, 93-119 (2007).
  17. Alex, A. P., Collier, J. L., Hadsell, D. L., Collier, R. J. Milk yield differences between 1x and 4x milking are associated with changes in mammary mitochondrial number and milk protein gene expression, but not mammary cell apoptosis or SOCS gene expression. Journal of Dairy Science. 98, 4439-4448 (2015).
  18. Lossa, S., Lionetti, L., Mollica, M. P., Crescenzo, R., Botta, M., Barletta, A., Liverini, G. Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. British Journal of Nutrition. 90, 953-960 (2003).
  19. Boily, G., Seifert, E. L., Bevilacqua, L., He, X. H., Sabourin, G., Estey, C., Moffat, C., Crawford, S., Saliba, S., Jardine, K., Xuan, J., Evans, M., Harper, M. E., McBurney, M. W. SirT1 regulates energy metabolism and response to caloric restriction in mice. PloS One. 3 (3), e1759 (2008).
  20. Chen, Y., Hagopian, K., Bibus, D., Villaba, J. M., Lopez-Lluch, G., Navas, P., Kim, K., McDonald, R. B., Ramsey, J. J. The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. Bioscience Reports. 33, 83-95 (2013).
  21. Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., Ferrick, D., Singal, A. K., Ballinger, S. W., Bailey, S. M., Hardy, R. W., Zhang, J., Zhi, D., Darley-Usmar, V. M. The bioenergetic health index: a new concept in mitochondrial translational research. Clinical Science. 127, 367-373 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved