A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol to rapidly isolate high-quality nuclei from the fresh or frozen tissue for downstream massively parallel RNA sequencing. We include detergent-mechanical and hypotonic-mechanical tissue disruption and cell lysis options, both of which can be used for isolation of nuclei.
Probing an individual cell's gene expression enables the identification of cell type and cell state. Single-cell RNA sequencing has emerged as a powerful tool for studying transcriptional profiles of cells, particularly in heterogeneous tissues such as the central nervous system. However, dissociation methods required for single cell sequencing can lead to experimental changes in the gene expression and cell death. Furthermore, these methods are generally restricted to fresh tissue, thus limiting studies on archival and bio-bank material. Single nucleus RNA sequencing (snRNA-Seq) is an appealing alternative for transcriptional studies, given that it accurately identifies cell types, permits the study of tissue that is frozen or difficult to dissociate, and reduces dissociation-induced transcription. Here, we present a high-throughput protocol for rapid isolation of nuclei for downstream snRNA-Seq. This method enables isolation of nuclei from fresh or frozen spinal cord samples and can be combined with two massively parallel droplet encapsulation platforms.
The nervous system is comprised of heterogenous groups of cells that display a diverse array of morphological, biochemical, and electrophysiological properties. While the bulk RNA sequencing has been useful for determining tissue-wide changes in the gene expression under different conditions, it precludes the detection of transcriptional changes at the single-cell level. Recent advances in the single-cell transcriptional analysis have enabled the classification of heterogenous cells into functional groups based on their molecular repertoire and can even be leveraged to detect sets of neurons that had been recently active.1,
All animal work was performed in accordance with a protocol approved by the National Institute of Neurological Disorders and Stroke Animal Care and Use Committee. Balanced samples of male and female ICR/CD-1 wild-type mice, between 8 and 12 weeks old, were used for all experiments. Mice should be handled in accordance with local Institutional Animal Care and Use Committee guidelines.
1. Preparation of Materials and Buffers
Here, we performed isolation of nuclei from the adult mouse lumbar spinal cord for downstream massively parallel RNA sequencing. The protocol involved three main components: tissue disruption and cellular lysis, homogenization, and sucrose density centrifugation (Figure 1). Within seconds, the detergent-mechanical lysis yielded a crude nuclei preparation with a large number of nuclei as well as cellular and tissue debris (Figure 2A
The ultimate goal of this protocol is to isolate nuclei containing high-quality RNA for downstream transcriptional analysis. We adapted snRNA-Seq methods in order to profile all of the cell types in the spinal cord. Initially, we found that typical cell dissociation methods were ineffective for single cell RNA sequencing, as spinal cord neurons are particularly vulnerable to cell death. Furthermore, cell dissociation methods induce expression of various activity- and stress-response genes by up to several hundred-fold.
This work was supported by the intramural program of NINDS (1 ZIA NS003153 02) and NIDCD (1 ZIA DC000059 18). We thank L. Li and C.I. Dobrott for their technical support and helpful discussions, and C. Kathe for reviewing the manuscript.
....Name | Company | Catalog Number | Comments |
Sucrose | Invitrogen | 15503-022 | |
1 M HEPES (pH = 8.0) | Gibco | 15630-080 | |
CaCl2 | Sigma Aldrich | C1016-100G | |
MgAc | Sigma Aldrich | M1028-10X1ML | |
0.5 M EDTA (pH = 8.0) | Corning | MT-46034CI | |
Dithiothreitol (DTT) | Sigma Aldrich | 10197777001 | Add DTT just prior to use |
Triton-X | Sigma Aldrich | T8787 | |
Nuclease-free water | Crystalgen | 221-238-10 | |
1 M Tris-HCl (pH = 7.4) | Sigma Aldrich | T2194 | |
5 M NaCl | Sigma Aldrich | 59222C | |
1 M MgCl2 | Sigma Aldrich | M1028 | |
Nonidet P40 | Sigma Aldrich | 74385 | |
Hibernate-A | Gibco | A12475-01 | |
Glutamax (100X) | Gibco | 35050-061 | |
B27 (50X) | Gibco | 17504-044 | |
1X PBS | Crystalgen | 221-133-10 | |
0.04% BSA | New England Biolabs | B9000S | |
0.2 U/μL RNAse Inhibitor | Lucigen | 30281-1 | |
Oak Ridge Centrifuge Tube | Thermo Scientific | 3118-0050 | |
Disposable Cotton-Plugged Borosilicate-Glass Pasteur Pipets | Fisher Scientific | 13-678-8B | |
Glass Tissue Dounce (2 ml) | Kimble | 885303-002 | |
Glass large clearance pestle | Kimble | 885301-0002 | |
Glass small clearance pestle | Kimble | 885302-002 | |
T 10 Basic Ultra Turrax Homogenizer | IKA | 3737001 | |
Dispersing tool (S 10 N – 5G) | IKA | 3304000 | |
Trypan Blue Stain (0.4%) | Thermo Fisher Scientific | T10282 | |
40 μm cell strainer | Falcon | 352340 | |
MACS SmartStrainers, 30 μm | Miltenyi Biotec | 130-098-458 | |
Conical tubes | Denville Scientific | 1000799 | |
Sorvall Legend XTR Centrifuge | Thermo Fisher Scientific | 75004505 | |
Fiberlite F15-6 x 100y Fixed-Angle Rotor | Thermo Fisher Scientific | 75003698 | |
Sterological Pipettes: 5 ml, 10 ml | Denville Scientific | P7127 | |
Hemocytometer | Daigger Scientific | EF16034F | |
Chemgenes Barcoding Beads | Chemgenes | Macosko-2011-10 | |
RNaseZap RNase Decontamination Solution | Invitrogen | AM9780 | |
Falcon Test Tube with Cell Strainer Cap (35 μm) | Corning | 352235 | |
MoFlo Astrios Cell Sorter | Beckman Coulter | B25982 | |
Chromium i7 Multiplex Kit, 96 rxns | 10X Genomics | 120262 | |
Chromium Single Cell 3’ Library and Gel Bead Kit v2, 4 rxns | 10X Genomics | 120267 | |
Chromium Single Cell A Chip Kit, 16 rxns | 10X Genomics | ||
Tissue Culture Dish (60 x 15 mm) | Corning | 353002 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved