Мы представляем протокол для генерации изотопно очищенного низкоэнергетического 229Th ионного луча из источника 233U. Этот ионный луч используется для прямого обнаружения распада грунтового состояния 229мTh через канал распада внутреннего преобразования. Мы также измеряем внутренний срок конверсии 229mTh, а также.
Описана методология для создания изотопно чистого 229-гоионного луча в состояниях 2 и 3 заряда. Этот ионный луч позволяет исследовать низменный изомерический первый возбужденный состояние 229Th при энергии возбуждения около 7,8(5) eV и радиационном сроке службы до 104 секунд. Представленный метод позволил провести первое прямое выявление распада изомера тория, заложив основы для изучения его свойств распада в качестве предпосылки для оптического контроля этого ядерного перехода. Высокая энергия 229Th ионов производятся в распаде радиоактивного 233U источника. Ионы термически термически в буферно-газовой остановочной ячейке, извлекаются и впоследствии образуется ионный луч. Этот ионный луч является массой, очищенной сепаратором четырехкратной массы для создания чистого ионного луча. Для того, чтобы обнаружить изомерик, ионы собираются на поверхности микро-канал пластины детектор, где электроны, как испускаемые во внутреннем распаде преобразования изомерики государства, наблюдаются.
Первое возбужденное метастабильное состояние в ядре тория-229, обозначаемое как 229mTh, демонстрирует особое положение в ядерном ландшафте, так как обладает самой низкой ядерной энергией возбуждения всех известных в настоящее время около 176 000 ядерных возбужденных состояний. В то время как типичные ядерные энергии варьируются от кеВ до региона МэВ, 229mTh обладает энергией ниже 10 эВ над ядерным наземным государством1,2,3. В настоящее время наиболее принятое энергетическое значениедля этого состояния составляет 7,8 (5) eV 4,5. Такая низкая энергетическая ценность вызвала интерес со стороны различных физических сообществ и привела к предложению нескольких интересных приложений. Среди них ядерный лазер6, высокостабильный кубит для квантовых вычислений7 и ядерные часы 8,9.
Причина, по которой 229mTh, как ожидается, будет предлагать широкий спектр применений, основана на том, что из-за своей необычайнонизкой энергии, это единственное ядерное государство, которое могло бы позволить прямое ядерное лазерное возбуждение с использованием имеющихся в настоящее время лазеров Технологии. До сих пор, однако, прямое ядерное лазерное возбуждение 229mTh было предотвращено недостаточным знанием параметров метастабильного состояния, таких как его точная энергия и срок службы. Хотя существование ядерного возбужденного состояния низкой энергии в 229Th уже было предусмотрело в 197610,все знания об этом состоянии можно было только сделать вывод из косвенных измерений, не позволяя точно определить его распад Параметры. Эта ситуация изменилась с 2016 года, когда первое прямое обнаружение 229mTh распада открыл дверь для множества измерений с целью закрепить взволнованный состояние параметров11,12. Здесь предусмотрен подробный протокол, в котором описаны индивидуальные шаги, необходимые для прямого обнаружения 229mTh, достигнутые в эксперименте 2016 года. Это прямое обнаружение обеспечивает основу для точного определения энергии и продолжительности жизни 229мThи, следовательно, для разработки ядерных часов. В следующем концепции ядерных часов, как наиболее важным приложением для 229mTh будет обсуждаться.
При относительной линейной ширине в размере 10-00-20 наземного состояния изомертории тория потенциально квалифицируется как ядерный стандарт частоты («ядерные часы»)8,9. Из-за атомного ядра примерно на 5 порядков меньше по сравнению с атомной оболочкой, ядерные моменты (магнитный диполь и электрический квадруполь) соответственно меньше, чем в атомах, что делает ядерные часы в значительной степени невосприимчивыми к внешним возмущений (по сравнению с нынешними самыми современными атомными часами). Таким образом, ядерный стандарт частоты обещает высокую стабильную и точную работу часов. Хотя точность, достигнутая в лучших присутствующих атомных часов достигает около 2.1x10-1813, что соответствует отклонению 1 секунды в период времени значительно дольше, чем возраст Вселенной, ядерные часы провести потенциал дальнейшего улучшение, которое может стать необходимым для обширной области применения. Спутниковые навигационные системы, такие как Глобальная система позиционирования (GPS), Глобальная навигационная спутниковая система (ГЛОНАСС) или Galileo, в настоящее время работают с точностью позиционирования в несколько метров. Если бы это можно было улучшить до сантиметровой или даже миллиметровой шкалы, можно было бы предусмотреть множество применений, начиная с автономного вождения и слежения за грузоперевозками или компонентами. Помимо высокоточных часов, такие системы потребуют надежной бесперебойной работы, с долгосрочной стабильностью дрейфа, которая обеспечивает длительные интервалы ресинхронизации. Использование ядерных часов может оказаться полезным с этой практической точки зрения. Дальнейшее практическое применение (синхронизированных сетей) ядерных часов может лежать в области релятивистской геодезии14, где часы действуют как 3D датчик тяжести, связанные с местными гравитационными потенциальными различиями ЗУ с измеренными (относительными) разница в частоте часов в случае смягчающими значениями в отношении «f/f»-u/c2 (c, обозначающий скорость света). Лучшие современные часы способны зондирования гравитационных сдвигов от разницы в высоте около 2 см. Таким образом, сверхточные измерения с использованием ядерной тактовой сети могут быть использованы для мониторинга динамики вулканических магмальных камер или движений тектонических плит15. Кроме того, использование таких часовых сетей было предложено в качестве инструмента для поиска теоретически описанного класса топологической темной материи16. Обширную дискуссию можно найти в литературе о применении 229mTh основе ядерных часов в поисках обнаружения потенциальных временных вариаций фундаментальных констант, как тонкая структура постоянной или сильного взаимодействия параметр (мq/q q ,с м q, представляющих массу кварка иq CD параметр масштаба сильного взаимодействия), предложенные в некоторых теориях объединения тяжести с другими взаимодействиями17. Обнаружение временного изменения в энергии перехода грунтового состояния 229mTh может обеспечить повышенную чувствительность примерно на 2-5 порядков величины для временных вариаций тонкой структуры постоянной или сильного параметра взаимодействия 18,19,20,21,22,23,24,25,26. Текущий экспериментальный предел для такого изменения составляет (d'/dt)/---0.7 (2.1)10-17/yr27. В следующем экспериментальный подход к прямому обнаружению 229mTh земли-состояние распада будут описаны.
Доказательства существования 229-торий изомер до недавнего времени можно было сделать только из косвенных измерений, предполагая, что энергия возбуждения 7,8(5) eV (эквивалент длины волны в вакууме ультрафиолетовый спектральный диапазон 160 (11) нм4 , 5. Наш экспериментальный подход, направленный на прямую идентификацию изомерического наземного состояния деэкскции 229mTh изомер, опирается на пространственное разделение популяции изомеров в буферно-газовой остановивой ячейке, за которой следует добыча, и массовое выделение транспорта к подходящему блоку обнаружения для регистрации продуктов дексцитации28,29. Таким образом, популяция и дексцитация изомера могут быть распутаны, что приводит к чистой среде измерения, не зависящее от быстрого фонового вклада. Население изомердостигается через распад от радиоактивного источника 233U, где 2% ветвь распада протекает не непосредственно к земле состояние 229Th, но заселяет изомерическое первое возбужденное состояние вместо. Ядра отдачи от упадок термически термически в ультра-чистой атмосфере гелия буферно-газовой остановочной ячейки, прежде чем направляться электрическими радиочастотными (РЧ) и полями прямого тока (DC) к сопло добычи, где перетаскивается новая сверхзвуковая газовая струя их в смежную вакуумную камеру, в которой размещается (сегментированная) радиочастотная четырехчастотная структура (РЧЗ), действующая в качестве ионного направляющего руководства, фазового пространства кулер и, возможно, также в качестве линейной ловушки Пола для сгустка извлеченных ионов. Для подробного описания буферно-газовой остановочной ячейки и добычи РЧЗ см. 30 год , 31 год , 32. С тех пор до этого момента извлеченный луч иона содержит in addition к 229(m)Th также цепь продуктов дочи распада, массовое разделение выполнено используя сепаратор массы четырехполового (ЗМС) в последующей камере вакуума к окончательно генерировать изотопно чистый 229(м)Th луч в выбираемых состояниях заряда (q q 1-3). Подробное описание ЗМС можно найти в Refs. 33 , 34. Обнаружение изомерического распада было достигнуто путем посягать на ионы Th непосредственно на поверхности детектора микроканаловой пластины (MCP), где электроны освобождаются, ускоряются к экрану фосфора и просматриваются устройством, состоящим из заряда (CCD) Камеры. Обзор экспериментальной установки показан на рисунке 1. Подробное описание приведено в Ref.35.
Рисунок 1: Обзор экспериментальной установки. Изомер тория-229 заселен через 2% ветку распада в распаде урана-233. 229м Ионы Th, оставляя 233U источника из-за их кинетической энергии отдачи, термически в буферно-газовой остановивой ячейке, наполненной 30-мбарным гелиевым газом. Ионы извлекаются из остановочного тома с помощью полей RF и DC, а низкоэнергетический ионный луч образуется с помощью радиочастотного квадруполя (РЦРЦ). Ионный луч массово очищается с помощью четырехполюсно-массового сепаратора (ЗМС), а ионы мягко имплантируются в поверхность детектора микроканал-пластины (MCP) в сочетании с фосфорным экраном, который позволяет пространственно разрешать любое происходящих сигналов. С любезного разрешения Springer Research эта цифра была изменена с11. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Следующий протокол описывает основную процедуру для создания 229(м)Th ионный луч, который позволил первое прямое обнаружение земле-состояния распада изомер тория, таким образом заложив основу для изучения его распада свойства как предпосылкой в конечном счете предусмотренного всеоптического контроля этого экзотического ядерного государства в направлении его применения в качестве сверхточного ядерного стандарта частоты. Для лучшей ориентации на рисунке 2,содержащем численную маркировку компонентов, рассмотренных в следующем протоколе, приводится схематический обзор установки, используемой для прямого обнаружения изомерического распада11. Также компоненты используемые для определения продолжительности жизни12 содержатся как внизание.
Рисунок 2: Схематический эскиз экспериментальной установки, используемой для обнаружения изомерического распада. Компоненты, используемые для измерения продолжительности жизни, отображаются в виде вниза. Отдельные компоненты, на которые будут ссылаться в разделе протокола, помечены численно. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Примечание: Числа, приведенные в Протоколе, будут ссылаться на Рисунок 2.
1. Прямое обнаружение Th-229 Изомерический Распад
2. Измерение 229m Th Half-Life (Переустановка установки)
Метод, описанный ранее, позволил извением продуктов распада из 233U источника, помещенного в буферно-газовый остановочной ячейке, работающей при температуре около 30 мбар ультра-чистого гелия при комнатной температуре. Впервые до тройного заряженных ионов можно было извлечь из такого устройства с высокой эффективностью29. На рисунке 3а показан массовый спектр ионов, извлеченных из буферно-газовой ячейки, показывая три группы из 233продуктов U и decay (плюс сопровождающие загрязняющие аддукты) в познавательно, вдвойне и тройно заряженных ионных состояниях. Примечательно, что доминирование 229Th3 "добычи по сравнению с 233U3", в то время как оба вида извлекаются примерно с одинаковой интенсивностью, когда вдвойне взимается. Этот факт был использован для сравнительных измерений с 233Ионами U, что позволило исключить любое ионное воздействие в качестве источника сигнала.
Рисунок 3 : Идентификация прямого распада 229-тория изомер. а) Полное массовое сканирование выполнено с 233U источник 129. Единицы даются как атомная масса (u) над электрическим зарядом (e). б) Сравнение сигналов MCP, полученных при накоплении тория и урана в состояниях заряда 2 "и 3" (как указано стрелками, связывающимися с массовым сканированием). 233 г. Вы и 234U источников были использованы (исходный номер дается на правой стороне каждой строки). Каждое изображение соответствует индивидуальному измерению времени интеграции 2000 с (диафрагма диаметром 20 мм, обозначенная разбитым кругом). Измерения проводились при поверхностном напряжении -25 V MCP, чтобы гарантировать мягкую посадку ионов. в) Сигнал 229Th изомерический распад, полученный в течение 229Th3 "экстракции с источником 1. Достигается диаметр зоны сигнала около 2 мм (FWHM). Полученная максимальная интенсивность сигнала составляет 0,08 отсчета/(с мм2)при фоновой скорости около 0,01 отсчета /(с мм2). С любезного разрешения Springer Research 11. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
После транспортировки, охлаждения и разделения массы ионный луч посягает на поверхность детектора микроканалов, где низкий привлекательный поверхностный потенциал обеспечивает подавление ионных сигналов воздействия и оставляет только электроны, вытекающие из внутреннего Канал распада преобразования (IC) изеомер 229mTh будет умножен в сильном электрическом поле каналов плиты детектора. Полученные сигналы MCP, полученные для трех различных источников урана, отображаются на рисунке 3b. Ионные виды вдвойне или тройно заряженных ионов, которые были выбраны с помощью сепаратора массы квадруполя в каждом отдельном измерении, указываются стрелками из верхней панели. Показаны фотографии, приобретенные с камерой CCD за фосфорным экраном, на которые были ускорены электроны из MCP. Поле зрения камеры CCD указывается пунктирными кругами для тройных (первые две колонны) и вдвойне заряженных (последние две колонны) 229Th и 233U ионов, соответственно. Верхний ряд представляет собой результат, полученный для небольшой области 233U источника (около 1000 извлеченных 229Th3 "ионов в секунду, источник 1), в то время как нижний ряд показывает то же самое для более сильного источника с около 10000 извлеченных 229Th3 " ионов в секунду (источник 3). Очевидно, что в обоих случаях четкий сигнал получен на 229Th, в то время как никаких признаков электронного сигнала не наблюдается для 233U 11. Для того, чтобы доказать, что этот сигнал действительно исходит от ядерного деиксцитации, а не от процесса атомной оболочки, средний ряд показывает полученное изображение камеры при использовании источника 234U, где распад населяет соседний изотоп 230 Th, с сопоставимой электронной, но другой ядерной структурой. Как и ожидалось, для 230Th, никаких признаков преобразования электронного сигнала не найдено ни в одном из исследованных случаев. Таким образом, сильный сигнал, отображаемый на рисунке 3c с отличным соотношением сигнала к фону, четко коррелирует с распадом 229mTh.
Дополнительные измерения проверки в поддержку такого толкования показаны на рисунке 4. Они показывают два измерения, чтобы дать дополнительные доказательства того, что зарегистрированные сигналы электрона действительно происходят от распада ядерного изомера: на рисунке 4a показано, что привлекательный поверхностный потенциал детектора MCP был изменен от -100 V ( в пользу возникновения электронов от ионного воздействия) до 0 V, сравнивая ставки подсчета, зарегистрированные с MCP для извлеченных 229Th2 "(красный) и 233У2 "ионов (синий). Очевидно, что показатель снижается до нуля для 233U2 "при реализации "мягкой посадки" входящих ионов с поверхностным напряжением ниже ca. -40 V, в то время как значительная частота подсчета остается на 229Th2 "до порога 0 V. На рисунке 4b, синяя кривая показывает скорость подсчета электронов, зарегистрированную для извлеченных ионов после сильного ускорения к поверхности детектора MCP с -2000 V. Ионическое воздействие 233У2 "и онов 229Th2" наблюдается примерно с одинаковой интенсивностью, как уже показано для вдвойне заряженных ионов в извлеченном масс-спектре Рисунок 3а. Красная кривая показывает тот же сценарий, однако теперь для "мягкой посадки" входящих ионов с -25 V MCP поверхности потенциала. Никаких указаний на ионный сигнал воздействия 233U2 "видно больше, в то время как для 229Th2" сигнал остается, происходящих из изомерического внутреннего распада преобразования11.
Рисунок 4 : Измерения проверки распада Изомера. а) 229Th2 "сигнал (красный) по сравнению с 233U2 "(синий) в качестве функции напряжения поверхности MCP. Ошибки указываются затененных полос. б) Сигнал извлеченных ионов в качестве функции соотношения массы к заряду за МСС для поверхностных напряжений MCP -25 V (изомер распада, красный) и -2,000 V (ионное воздействие, синий). Обратите внимание на различные времена интеграции и весы оси. В дополнение к сигналу на 114.5 u/e (соответствует 229Th2 '), происходит дальнейший сигнал на 117.5 u/e, который возникает от изомерического распада 235U. С любезного разрешения Springer Research11. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Таким образом, может быть однозначно доказано (вместе с дополнительными аргументами, приведенными в Ref. 11), что сигнал, наблюдаемый на рисунке 4, исходит от изомерического распада 229мTh и представляет собой первое прямое определение деэкскции этого неуловимого изомера.
Впоследствии сегментированная экстракция-РИЗ была эксплуатирована как линейная ловушка Пола для создания связного ионного луча, что позволило завсю жизнь изомерить тория. Так как наш комнатно-температурный высокий вакуум не позволяет достаточно долгое время хранения, чтобы исследовать ожидаемый срок службы до 104 секунд, только нижний предел т1'2 ионов, ограниченных максимально достижимым временем хранения иона в линейной ловушке Павла11. Однако, используя ту же стратегию обнаружения, что применялась ранее для идентификации распада изомеров после нейтрализации ионов тория на поверхности детектора MCP, ожидаемый гораздо более короткий срок службы для нейтральных атомов 229mTh, проходящих внутренний распад преобразования обеспечивает доступ к информации о продолжительности жизни12. На рисунке 5а показана ожидаемая форма спектра времени распада, как смоделированная для ионного пучка с шириной пульса 10. В то время как красная кривая указывает на ионный сигнал воздействия и сигнал от экспоненциального распада с периодом полураспада 7 й с представляет собой серую кривую с длинным хвостом распада, ожидаемый сигнал от распада изомера тория, состоящий как из ионного воздействия, так и e xponential изомерический распад, иллюстрируется синей кривой. Рисунок 5b отображает результат соответствующего измерения для 233U3 "(красный) и 229Th3 "(синий), соответственно. Пока ионы урана только exhibit их ионный сигнал удара, для 229-тория ясно предпологаемый хвост распада изомера можно наблюдать12.
Рисунок 5 : Имитированное и измеренное влияние ира и височные ионные характеристики. а) Моделирование характеристик времени распада изомеров 229Th пучки. Моделирование основано на измеренной форме сгустка и предположении, что 2% из 229Ионов Th находятся в изомерическом состоянии с периодом полураспада 7 после нейтрализации. Эффективность обнаружения электронов в 25 раз превышает эффективность обнаружения иона. б) Измерение изомерического распада с сгустками 229 (м)Th3 "ионный луч (синий). Сравнительное измерение с 233U3 "показано красным цветом. С любезного разрешения Американского физического общества12. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Установка распада хвост с экспоненциальным (соответствующие линейной подходят к логарифмической представления на рисунке 6) наконец, приводит к периоду полураспада нейтрального 229mTh изомер 7 (1) 12 . Это значение приятно согласуется с теоретически ожидаемым сокращением срока службы на девять порядков величины с около 104 секунд в случае заряженного изомера из-за большого коэффициента преобразованияIC No 10937.
Рисунок 6 : Подходит для 229m Кривая распада. Логарифмический участок временных характеристик распада для 229 (м)Th2 "ионов (а) и 229(м) Th3 "ионов (b) вместе с кривой пригонки применяется для извлечения изомерической период полураспада 229mTh после рекомбинации заряда на поверхность детектора MCP. С любезного разрешения Американского физического общества12. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Диапазон отдачи и ядра дочери распада в уране составляет всего около 16 нм. Для достижения высокой эффективности источника для ионов для данного источника деятельности необходимо ограничить толщину исходного материала в этом диапазоне. Эффективность извлечения отдачи сильно зависит от чистоты буферно-газовой ячейки. Загрязнение остановочного газа приведет к обмену заряда или образованию молекул. Таким образом, газовая ячейка сама должна быть построена в соответствии с ультра-высокими стандартами вакуума, в частности, чтобы обеспечить выпечку клетки и избежать каких-либо органических материалов внутри. Остановивая газовая система должна быть очищена в соответствии с техническим состоянием, начиная от чистоты газа высокого класса, помогаемой каталитической очисткой и доставкой в газовую ячейку через сверхчистую линию газоснабжения, частично окруженную криогенной ловушкой заморозить примесей. В целом, тщательное выравнивание центральной оси полной установки в положение сопла для извлечения газовых элементов имеет важное значение для достижения высокой эффективности транспортировки и обнаружения29.
Шаг 1.4.5 является наиболее критическим протоколом. Для эффективной ионной экстракции к электроду воронки необходимо нанести высокортомного амплитуда. Однако, если амплитуду выбрана слишком высоко, искры в газовой ячейке будут происходить. Максимально достижимая амплитуда напряжения РФ критически зависит от чистоты буферного газа. Успешное применение напряжения контролируется через ток воронки смещенного напряжения. Это течение будет увеличиваться в случае искр. Если искры имели место, процедура выпекания должна быть повторена, чтобы гарантировать высокую эффективность извлечения ионов.
Еще одним критическим моментом является применение высокого напряжения к детектору MCP (шаги 1.6.2-1.6.4). Полевыми выбросами могут происходить на McP, что приводит к излучению электронов, что может привести к артефактуальным сигналам.
Оптимальная ионная экстракция и (охлажденный и очищенный массой) транспорт к блоку обнаружения требует тщательного выравнивания центральной оптической оси. Наличие оптической системы выравнивания (лазер выравнивания или теодолита) имеет важное значение. Эффективный ионный транспорт через извлечения РИз и ЗМС требует непрерывной стабилизации радиочастотных амплитуд для двух противоположных фаз, применяемых к каждой противоположной паре стержней29. Идентификация извлечения или транспортных проблем может быть облегчена путем ионной диагностики реализованы, например, через многоканальный детектор пластины размещены либо последовательно в различных положениях вдоль ионной траектории во время ввода в эксплуатацию фазы установка, или же, например, под 90o за добычей РЧЗ с высоким отрицательным поверхностным напряжением (1-2 кВ), чтобы привлечь все извлеченные ионы к детектору.
Во время операции обычно могут возникнуть две проблемы. Не все напряжения правильно применяются. В этом случае обычно ионы не извлекаются, и нужно найти место неправильно нанесенного напряжения. Также примеси присутствуют в буферном газе гелия. В этом случае эффективность извлечения тройных заряженных ионов тория будет резко снижена и происходит формирование молекул. В худшем случае, даже искры будут отображаться, когда напряжение воронки применяется. Причиной недостаточной чистоты газа, как правило, является утечка в линии газоснабжения или неправильно закрытый фланг буферно-газовой остановочной ячейки.
Описанный метод генерации чистого пучка ионов, содержащих энергетически низменный 229mTh изомер, может быть применен ко всем сопоставимым случаям, когда ион интереса может быть извлечен из буферно-газовой атмосферы в значительных количествах. Чистота газоэлементного и буферного газа является обязательной, поэтому количество оставшихся газовых примесей является ограничением чувствительности метода. В то время как используемый детектор микроканаловой пластины (MCP) основан на обнаружении электронов, как используется здесь для регистрации низкоэнергетических конверсионных электронов, этот случай уже лежит на низкоэнергетической границе кривой эффективности для MCPs38, в то время как для более высоких энергий метод значительно повысил бы эффективность обнаружения.
До настоящего времени описанный метод обеспечил единственную зарегистрированную прямую и недвусмысленную идентификацию девозбуждения изомера тория. Кроме того, вакуумные ультрафиолетовые (VUV)-прозрачные кристаллы (с большими полосами, превышающими предполагаемую энергию возбуждения изомера) унижаются 229Th. Цель состоит в том, чтобы поместить 229Th ионов в высоком (4)зарядсостояние состояние кристаллических позиций решетки, ингибировать де-возбуждение большой разрыв полосы и направлены на возбуждение изомера с помощью рентгеновских лучей из источников синхротронного света. Несмотря на элегантную концепцию такого подхода, до сих пор не VUV флуоресценции можно было наблюдать в серии экспериментов сообщили несколько групп по всему миру39,40,41,42,43 . То же самое относится и к классу экспериментов, целью которых является реализация ядерного возбуждения изомера через электронную оболочку 229Th, используя так называемый переход на электронный мост. Здесь резонансное соединение между переходом электронной оболочки и ядерным изомером должно позволить для более эффективной популяции изомеров44,45. Другие эксперименты, направленные на исследование изомериковых свойств, основаны на микрокалориметрии46 или наблюдении гипертонкого переноса атомной оболочки47. Совсем недавно другой метод, чтобы возбудить изомер в лазерной плазмы было сообщено48 и подлежит научной дискуссии в рамках сообщества.
Открытие внутреннего канала распада преобразования тория изомер11 и определение соответствующего полураспада нейтральных 229mTh (7 (1)12 могут быть использованы в будущем, чтобы реализовать первый все-оптический возбуждение с импульсным, tunable VUV лазер на основе уже существующих технологий. Таким образом, нынешняя парадигма, что это потребует гораздо лучшего знания энергии возбуждения и соответствующие индивидуальные лазерной разработки можно обойти. В отличие от этого, используя знания внутреннего преобразования электронного излучения, gating обнаружения преобразования электронов с лазерным импульсом обеспечит высокое соотношение сигнала к фону, в то время как позволяет сканирование 1 эВ энергии возбуждения менее чем за 3 дни49. Кроме того, определение энергии возбуждения изомер, все еще находится в стадии разработки, может быть основано на описанном методе генерации 229mTh пучка, отправив IC распада электронов в магнитно-бутылка электрон спектрометр с тормозной полевые электродные сетки50. Тот же метод также позволит определить изомерический срок службы для различных химических сред (например, на больших пластырных материалах, таких как CaF2 или замороженный аргон) или в 229Th, а также в свободном нейтральном атоме.
Описанный метод генерации изотопно чистого ионного луча тория в состоянии заряда 3 "может быть использован в качестве инструмента для обеспечения ионов тория для будущих экспериментов лазерной спектроскопии. В этом случае ионный луч может быть использован для загрузки ловушки Павла в стабильной и эффективной форме. До сих пор единственным альтернативным методом является производство 229Th3 "с помощью лазерной абляции от твердой цели. Это, однако, требует высокой интенсивности лазера и большого количества 229Th, который является дорогим радиоактивным материалом и приводит к загрязнению использованных вакуумных компонентов. По этой причине описанный метод может быть значительным преимуществом, когда дело доходит до ядерных экспериментов лазерной спектроскопии. Первое приложение этого типа уже опубликовано51.
Авторам нечего раскрывать.
Эта работа была поддержана научно-исследовательской и инновационной программой Европейского союза «Горизонт 2020» в соответствии с Грантным соглашением No 664732 «nuClock», грантом DFG Th956/3-1 и отделением медицинской физики ЛМУ через Лабораторию Майер-Лейбница.
Name | Company | Catalog Number | Comments |
Uranium-233 Source | Institut für Radiochemie Universität Mainz | customized | 290 kBq U-233 deposited onto 90 mm diameter |
RF funnel | Secamus Laserschneidtechnik GmbH | customized | 50 ring electrodes, laser cut and electropolished |
Buffer-gas stopping cell | Workshop of LMU Munich | customized | Vacuuchamber DN200 CF for buffer-gas stopping cell |
Roughing pump | Leybold | Screwline SP 250 | Roughing pump for entire system |
Roughing pump control | Siemens | Micromaster 420 | Control unit for Screwline SP 250 |
Vacuum gauge Prepressure | Pfeiffer | TPR 265 | Pressure control for roughing pump |
Vacuum gauge cell 1 | Pfeiffer | CMR 261 | Pressure control for cell (high-pressure range) |
Vacuum gauge cell 2 | Pfeiffer | PBR 260 | Pressure control for cell (low-pressure range) |
Vacuum gauge RFQ | Pfeiffer | PKR 261 | Pressure control for RFQ pressure read-out |
Pressure gauge QMS | Pfeiffer | PKR 261 | Pressure control for QMS pressure read-out |
Pressure control unit | Pfeiffer | TPG 256 A | Control unit for all pressure gauges |
Control PC 1 | Fujitsu | unknown | Control computer for buffer-gas stopping cell |
Simatic with CPU | Siemens | S7-300 | Simatic for automation and control |
Simatic without CPU | Siemens | ET 200M | Simatic for automation and control |
Vacuum valves | SMC | XLH-40 | Vacuum valves for evacuation control |
UHV gate valve | VAT | 48240-CE74 | Gate valve for cell closing during operation |
Turbo-Molecular pump 1 | Pfeiffer | TMU 400M | Turbo pump for cell |
Control unit for TMP 1 | Pfeiffer | TCM 1601 | Control unit for TMP TMU 400M |
Turbo-Molecular pump 2 | Pfeiffer | HiMag 2400 | Trubo pump for RFQ |
Turbo-Molecular pump 3 | Edwards | STP 603 | Trubo pump for QMS |
Control unit for TMP 3 | Edwards | SCU-800 | Control unit for TMP Edwards STP 603 |
Bypass valve of gas tubing | Swagelok | SS-6BG-MM | Valve to bypass the mass-flow controller |
Heating sleeves | Isopad | customized | Heating sleeves for bake out of cell and RFQ |
Temperature sensors | Isopad | TAI/NM NiCrNi | Temperature sensors for bake-out system |
Heating control unit | Electronic workshop of LMU Munich | customized | Control unit for Isopad heating sleeves |
Catalytic gas purifier | SAES MonoTorr | PS4-MT3-R-2 | Gas purifier for ultra-pure helium supply |
He gas cylinder | Air Liquide | He 6.0, 50 liters | Helium of 99.9999 % purity |
Pressure reducer | Druva | FMD 502-16 | Pressure reducer for He gas cylinder |
Valve of gas supply | Swagelok | SS-6BG-MM | Valve to open or close the gas supply |
Mass flow control | AERA | FC-780CHT | Mass flow control valve for He supply |
control unit for mass flow valve | Electronic workshop of LMU Munich | customized | Control unit for AERA mass flow control |
Gas tubing | Dockweiler | Ultron | electropolished gas tubing for He supply |
Cryogenic trap | Isotherm | unknown | cryogenic trap for He purification (optional) |
DC voltage supply for source | Electronic workshop of LMU Munich | customized | DC offset voltage supply for U-233 source |
DC voltage supply for funnel | Heinzinger | LNG 350-6 | Power supply for DC gradient of funnel |
DC voltage supply for RFQ | Iseg | unknown | DC voltage supply for funnel offset, nozzle and RFQ |
Laval nozzle | Friatec AG | customized | Laval nozzle for He and ion extraction |
DC voltage supply for buncher | Heinzinger | LNG 350-6 | DC supply for bunching electrode |
Trigger module | Electronic workshop of LMU Munich | customized | Trigger module for bunched operation |
RF generator for funnel | Stanford Research Systems | SRS DS 345 | RF generator for funnel |
RF amplifier for funnel | Electronic Navigation Industries | ENI 240L-1301 | Rf amplifier for funnel |
RF phase divider for funnel | Electronic workshop of LMU Munich | customized | RF phase divider for funnel |
RF+DC mixer for funnel | Electronic workshop of LMU Munich | customized | Voltage divider and RF+DC mixer for funnel voltage |
Extraction RFQ | Workshop of LMU Munich | customized | Extraction RFQ for ion-beam formation or storage |
RF generator for RFQ | Stanford Research Systems | SRS DS 345 | RF generator for RFQ |
RF amplifier for RFQ | Electronic workshop of LMU Munich | customized | RF amplifier for RFQ |
RF amplifier for bunch electrode | Electronic workshop of LMU Munich | customized | RF amplifier for bunch electrode |
RF+DC mixer for RFQ | Electronic workshop of LMU Munich | customized | Mixes the RF and DC potentials for RFQ voltage |
RFQ exit electrode | Workshop of LMU Munich | customized | 2-mm diameter exit aperture for differential pumping |
4 Channel DC supply | Mesytec | MHV 4 | DC offset for aperture and triode |
QMS | Workshop of LMU Munich | customized | Quadrupole mass separator for m/q selection |
Brubaker DC offset module | Electronic workshop of LMU Munich | customized | DC offset supply for Brubaker lenses of QMS |
QMS DC offset module | Electronic workshop of LMU Munich | customized | DC offset supply for QMS |
USB-to-Analog converter | EA Elektro-Automatik | UTA12 | to generate signal for QMS HV shifter |
QMS HV shifter | Electronic workshop of LMU Munich | customized | to shift the voltage of the QMS DC module |
QMS DC module | Electronic workshop of LMU Munich | customized | Module to provide DC voltages for QMS |
RF generator for QMS | Tektronix | AFG 3022B | RF generator for QMS |
RF amplifier for QMS | Electronic workshop of LMU Munich | customized | RF amplifier for QMS |
Picoscope | Pico Technology | Picoscope 4227 | Oscilloscope for QMS RF control |
Control PC 2 | Fujitsu | Esprimo P900 | Control computer for QMS |
Triode extraction system | Workshop of LMU Munich | customized | Set of three ring electrodes to guide ions |
MCP detector | Beam-Imaging-Solutions | BOS-75-FO | MCP detector with phosphor sreen |
DC voltage supply for MCP | Keithley Instruments | HV Supply 246 | Voltage supply for MCP front side |
DC voltage supply for MCP | CMTE (NIM module) | HV 3160 | Voltage supply for MCP back side |
DC voltage supply for MCP | Fluke | HV Supply 410B | Voltage supply for phosphor sreen |
CCD camera | PointGrey | FL2-14S3M-C | CCD camera for image recording |
Control PC 3 | Fujitsu | Esprimo P910 | Control computer for CCD camera |
Light-tight housing | Workshop of LMU Munich | customized | Light tight wooden box for CCD camera |
Dewar for LN2 supply | Isotherm | unknown | Dewar to provide dry nitrogen for venting |
Evaporator for LN2 | Workshop of LMU Munich | customized | Evaporator to provide dry nitrogen |
Single anode MCP detector | Hamamatsu | F2223 | Single anode MCP for lilfetime measurement |
DC voltage supply for MCP | Fluke | HV supply 410B | Voltage supply for MCP anode |
Power supply for preamplifier | Delta Elektronika | E 030-1 | Power supply for preamplifier |
Preamplifier for MCP signals | Ortec | VT120A | Preamplifier for MCP signals |
Amplifier for MCP signals | Ortec (NIM module) | Ortec 571 | Amplifier for MCP signals |
CFD | Canberra | 1428A | Constant-fraction-discriminator for MCP signals |
Multichannel Scaler | Stanford Research | SR 430 | Multichannel scaler for signal read-out |
Control PC 4 | Fujitsu | Esprimo P920 | Control computer for scaler read-out |
Labview | National Instruments | various versions | Program used for measurement control |
Matlab | Mathworks Inc. | version 7.0 | Program used for data analysis |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved