A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
We describe a simple lithographic procedure for the immobilization of gene-length DNA molecules on a surface, which can be used to perform cell-free gene expression experiments on biochips.
Immobilization of genes on lithographically structured surfaces allows the study of compartmentalized gene expression processes in an open microfluidic bioreactor system. In contrast to other approaches towards artificial cellular systems, such a setup allows for a continuous supply with gene expression reagents and simultaneous draining of waste products. This facilitates the implementation of cell-free gene expression processes over extended periods of time, which is important for the realization of dynamic gene regulatory feedback systems. Here we provide a detailed protocol for the fabrication of genetic biochips using a simple-to-use lithographic technique based on DNA strand displacement reactions, which exclusively uses commercially available components. We also provide a protocol on the integration of compartmentalized genes with a polydimethylsiloxane (PDMS)-based microfluidic system. Furthermore, we show that the system is compatible with total internal reflection fluorescence (TIRF) microscopy, which can be used for the direct observation of molecular interactions between DNA and molecules contained in the expression mix.
Cell-free gene expression reactions are of great interest for various applications in biochemistry, biotechnology, and synthetic biology. Cell-free expression of proteins was instrumental for the preparation of pure protein samples, which were the basis for numerous studies in structural biology. For instance, cell-free systems were successfully used for the expression of protein complexes1 or membrane proteins2, which are difficult to produce using cell-based expression. Notably, cell-free gene expression reactions were also used to elucidate the structure of the genetic code, starting with the groundbreaking experiment....
NOTE: A time schedule for the steps in the different sections is given in the supplementary information (section 1).
1. Chip Fabrication
NOTE: As substrates, use silicon wafers (100 mm diameter, 0.525 mm thickness) with a 50 nm thick layer of silicon dioxide or glass slides (24 mm x 24 mm, no. 1.5; 22 mm x 50 mm, no. 4). Depending on the application, other sizes and thicknesses may be more suitable.
Two-step lithography: Figure 5 shows the result of a two-step lithographic process on a glass slide with overlapping patterns of fluorescently labeled DIS strands.
Expression of a fluorescent protein from a gene brush: Figure 6 demonstrates the expression of the fluorescent protein YPet from immobilized DNA. At several points in time we assessed the gene expression rate.......
Bephore lithography is a robust and versatile technique for the patterned immobilization of DNA or RNA. Yet, the procedure includes several steps, which - if changed - may be a source for failure or reduced performance of the system.
A crucial step in the fabrication of Bephore chips is the PEGylation of the substrate, which provides the biocompatibility of the surface. Here, the cleaning step with an RCA procedure is important, since it also activates the surface for the subsequent silanizati.......
We gratefully acknowledge financial support for this project by the Volkswagen Stiftung (grant no. 89 883) and the European Research Council (grant agreement no. 694410 - AEDNA). M.S.-S. acknowledges support by the DFG through GRK 2062.
....Name | Company | Catalog Number | Comments |
Silicon wafer with 50 nm silicon dioxide (Bephore substrate) | Siegert Wafer | Thickness (µm): 525 ±25, Diameter (mm): 100 | |
Silicon wafer (for PDMS master mold) | Siegert Wafer | Thickness (µm): 525 ±25, Diameter (mm): 76.2 (3”) | |
Glass slides no. 4 | Menzel | 22 mm x 50 mm | |
Glass slides no. 1.5 | Assistent | 24 mm x 24 mm | |
Biotin-PEG-Silane | Laysan Bio | MW 5,000 | |
Anhydrous toluene | Sigma Aldrich (Merck) | 244511 | |
Streptavidin | Thermo-Fisher Scientific | S888 | |
DNA | Integrated DNA Technologies (IDT) | ||
Phusion High-Fidelity PCR Master Mix with HF Buffer | New England Biolabs | M0531S | PCR kit |
Wizard SV Gel and PCR Clean-Up System | Promega | A9281 | Spin-column PCR clean-up kit |
PURExpress | New England Biolabs | E6800S | Cell-free expression system |
PDMS | Dow Corning | Slygard 184 | |
FluoSpheres | Thermo-Fisher Scientific | F8771 | |
PTFE tubing (ID: 0.8mm, OD: 1.6 mm) | Bola | S 1810-10 | |
EpoCore 20 | micro resist technology GmbH | Photoresist | |
mr-Dev 600 | micro resist technology GmbH | Photoresist developer | |
Ti-Prime | MicroChemicals | Adhesion promoter | |
Two-component silicon glue | Picodent | Twinsil | |
UV-protection yellow foil | Lithoprotect (via MicroChemicals) | Y520E212 | |
Equipment | |||
Masks for photolithography | Zitzmann GmbH | 64.000 dpi, 180x240 mm | |
Upright microscope | Olympus | BX51 | Photolithography and fluorescence imaging |
60x water immersion objective | Olympus | LumPlanFl | Used with Olympus BX51, NA 0.9 |
20x water immersion objective | Olympus | LumPlanFl | Used with Olympus BX51, NA 0.5 |
Camera | Photometrics | Coolsnap HQ | Used with Olympus BX51 |
Ligtht source | EXFO | X-Cite 120Q | Used with Olympus BX51 |
Inverted microscope | Nikon | Ti2-E | Fluorescence imaging of gene expression |
4x objective | Nikon | CFI P-Apo 4x Lambda | Used with Nikon Ti2-E |
Camera | Andor | Neo5.5 | Used with Nikon Ti2-E |
Light source | Lumencor | SOLA SM II | Used with Nikon Ti2-E |
Cage incubator | Okolab | bold line | Used with Nikon Ti2-E |
Pressure Controller | Elveflow | OB1 MK3 | |
NanoPhotometer | Implen | DNA concentration measurement | |
Plasma cleaner | Diener | Femto | 200 W, operated at 0.8 mbar with the sample in a Faraday cage |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved