JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

Functional Surface-immobilization of Genes Using Multistep Strand Displacement Lithography

Published: October 25th, 2018

DOI:

10.3791/58634

1Physics Department, Technical University of Munich

* These authors contributed equally

Abstract

Immobilization of genes on lithographically structured surfaces allows the study of compartmentalized gene expression processes in an open microfluidic bioreactor system. In contrast to other approaches towards artificial cellular systems, such a setup allows for a continuous supply with gene expression reagents and simultaneous draining of waste products. This facilitates the implementation of cell-free gene expression processes over extended periods of time, which is important for the realization of dynamic gene regulatory feedback systems. Here we provide a detailed protocol for the fabrication of genetic biochips using a simple-to-use lithographic technique based on DNA strand displacement reactions, which exclusively uses commercially available components. We also provide a protocol on the integration of compartmentalized genes with a polydimethylsiloxane (PDMS)-based microfluidic system. Furthermore, we show that the system is compatible with total internal reflection fluorescence (TIRF) microscopy, which can be used for the direct observation of molecular interactions between DNA and molecules contained in the expression mix.

Explore More Videos

Keywords DNA Biochips

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved