Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Here, we present a method for delivering viral expression vectors into the brain using silk fibroin films. This method allows targeted delivery of expression vectors using silk/AAV coated optical fibers, tapered optical fibers, and cranial windows.
The quest to understand how neural circuits process information in order to drive behavioral output has been greatly aided by recently-developed optical methods for manipulating and monitoring the activity of neurons in vivo. These types of experiments rely on two main components: 1) implantable devices that provide optical access to the brain, and 2) light-sensitive proteins that change neuronal excitability or provide a readout of neuronal activity. There are a number of ways to express light-sensitive proteins, but stereotaxic injection of viral vectors is currently the most flexible approach because expression can be controlled with genetic, anatomical, and temporal precision. Despite the great utility of viral vectors, delivering the virus to the site of optical implants poses numerous challenges. Stereotaxic virus injections are demanding surgeries that increase surgical time, increase the cost of studies, and pose a risk to the animal's health. The surrounding tissue can be physically damaged by the injection syringe, and by immunogenic inflammation caused by the abrupt delivery of a bolus of high-titer virus. Aligning injections with optical implants is especially difficult when targeting small regions deep in the brain. To overcome these challenges, we describe a method for coating multiple types of optical implants with films composed of silk fibroin and Adeno-associated viral (AAV) vectors. Fibroin, a polymer derived from the cocoon of Bombyx mori, can encapsulate and protect biomolecules and can be processed into forms ranging from soluble films to ceramics. When implanted into the brain, silk/AAV coatings release virus at the interface between optical elements and the surrounding brain, driving expression precisely where it is needed. This method is easily implemented and promises to greatly facilitate in vivo studies of neural circuit function.
The past decade has produced an explosion of engineered light-sensitive proteins for monitoring and manipulating neural activity1. Viruses offer unparalleled flexibility for expressing these optogenetic tools in the brain. Compared to transgenic animals, viruses are far easier to produce, transport, and store, allowing fast implementation of the newest optogenetic tools. Expression can be targeted genetically to distinct neuronal populations, and viruses designed for the retrograde transport can even be used to target expression based on neuronal connectivity2.
Viruses are usually introduced w....
All experiments involving animals were performed in accordance with protocols approved by the Harvard Standing Committee on Animal Care following guidelines described in the US NIH Guide for the Care and Use of Laboratory Animals. Adult C57BL/6 mice of either sex (6-15 weeks of age) were used for all experiments.
1. Obtain Aqueous Silk Fibroin
2. Mix Aqueous Silk with AAV Expression Vectors
To assess the success of silk/AAV films in driving expression, we perfused animals 2-3 weeks after implantation and prepared brain slices from the region of interest. Fluorescence images of fluorophore-tagged optogenetic proteins (ChR2-YFP) provided a measure of the extent of expression (Figure 1D). Typical optical fibers (230 µm diameter) can readily accommodate 200 nL of silk/AAV. With practice, experimenters can achieve highly reliable expression arou.......
The use of silk/AAV to target the expression of optogentic proteins overcomes limitations of approaches that are currently in use. Although many studies successfully use AAV injections to express optogenetic proteins, it is challenging to align expression to the tip of optical fibers, to regions around the length of tapered fibers, and to the viewing region of a GRIN lens. Because of misalignment between optical components and optogenetic expression, stereotaxic injections can be unreliable, and many experiments fail. Th.......
The authors have nothing to disclose.
The authors wish to thank J. Vazquez for illustrations, D. Kaplan and C. Preda for reagents and helpful guidance, and the labs of B. Sabatini and C. Harvey for in vivo imaging. Microscopy was made possible by M. Ocana and the Neurobiology Imaging Center, supported in part by the Neural Imaging Center as part of a National Institute of Neurological Disorders and Stroke (NINDS) P30 Core Center grant (NS072030). This work was supported by the GVR Khodadad Family foundation, the Nancy Lurie Marks foundation, and by NIH grants, NINDS R21NS093498, U01NS108177 and NINDS R35NS097284 to W.G.R, and by an NIH postdoctoral fellowship F32NS101889 to C.H.C.
....Name | Company | Catalog Number | Comments |
Aqueous silk fibroin | Sigma | 5154-20ML | Aqueous Silk Fibroin (5% w/v) for making films |
Microinjector to deposit silk/AAV | Drummond | 3-000-207 | Nanoject III nanoliter injector |
Manipulator to hold implants | Narashige | MM-33 | Micromanipulator |
Stereoscope to visualize silk deposits | AmScope | SM-6TX-FRL | 3.5X-45X Trinocular articulating zoom microscope with ring light |
Vacuum chamber to store implants | Ablaze | N/A | 3.5 Quart Vacuum Vac Degassing Chamber |
Optional, implant holder for storage | N/A | N/A | To store premade optical fibers, drill a grid of ~4 mm-deep holes with a diameter just larger than the ferrule diameter into a plastic block. |
Optical fiber | Thorlabs | FT200EMT | Ø200 µm Core Multimode Optical Fiber for fiber implants |
Ferrules | Kientec | FZI-LC-230 | LC Zirconia Ferrule for fiber implants |
Various materials for manufacturing chronic fiber implants | Various | N/A | For detailed procedure, see Ung K, Arenkiel BR. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue. Journal of visualized experiments: JoVE. 2012(68). |
Tapered fiber implants | Optogenix | Lambda-B | Tapered fiber implants |
GRIN lenses | GoFoton | CLH-100-WD002-002-SSI-GF3 | GRIN lenses |
Small glass cranial windows | Warner | 64-0726 (CS-3R-0) | Small round cover glass, #0 thickness |
Large glass cranial windows | Warner | 64-0731 (CS-5R-0) | Small round cover glass, #0 thickness |
Various materials for manufacturing cranial windows | Various | N/A | For detailed procedure, see Goldey GJ et al. Removable cranial windows for long-term imaging in awake mice. Nature protocols. 2014 Nov;9(11):2515. |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены