A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a modality for non-invasive mechanical stimulation of endogenous or engineered cells with high spatial and temporal resolution. This article describes how to implement LIPUS to an epi-fluorescence microscope and how to minimize acoustic impedance mismatch along the ultrasound path to prevent unwanted mechanical artefacts.
By focusing low-intensity ultrasound pulses that penetrate soft tissues, LIPUS represents a promising biomedical technology to remotely and safely manipulate neural firing, hormonal secretion and genetically-reprogrammed cells. However, the translation of this technology for medical applications is currently hampered by a lack of biophysical mechanisms by which targeted tissues sense and respond to LIPUS. A suitable approach to identify these mechanisms would be to use optical biosensors in combination with LIPUS to determine underlying signaling pathways. However, implementing LIPUS to a fluorescence microscope may introduce undesired mechanical artefacts due to the presence of physical interfaces that reflect, absorb and refract acoustic waves. This article presents a step-by-step procedure to incorporate LIPUS to commercially-available upright epi-fluorescence microscopes while minimizing the influence of physical interfaces along the acoustic path. A simple procedure is described to operate a single-element ultrasound transducer and to bring the focal zone of the transducer into the objective focal point. The use of LIPUS is illustrated with an example of LIPUS-induced calcium transients in cultured human glioblastoma cells measured using calcium imaging.
Many diseases require some form of invasive medical intervention. These procedures are often expensive, risky, require recovery periods and thus add a burden to health care systems. Non-invasive therapeutic modalities have the potential to provide safer and cheaper alternatives to conventional surgical procedures. However, current non-invasive approaches such as pharmacotherapy or transcranial magnetic stimulation are often limited by trade-offs between tissue penetration, spatiotemporal resolution and unwanted off-target effects. In this context, a focused ultrasound constitutes a promising non-invasive technology with the potential to manipulate biological functions deep inside tissues with high spatiotemporal accuracy and limited off-target effects.
Focused ultrasound stimulation consists of delivering acoustic energy at precise locations deep inside living organisms. Depending on acoustic pulse parameters, this energy can have a variety of medical uses. For instance, the Food and Drug Administration has approved the use of High-intensity Focused Ultrasound (HiFU) for thermal ablation of prostate tumors, tremor-causing brain regions, uterine fibroids and pain-causing nerve endings in bone metastases1. HiFu-mediated microbubble cavitation is also used to transiently open the blood-brain barrier for the targeted delivery of systemically-administered therapeutics2. The spatial-peak pulse-average intensity (Isppa) and spatial-peak temporal-average intensity (Ispta) used for HiFU applications are typically above several kW cm-2 and produce pulse pressure of several tens of MPa. These intensity values are far above the FDA-approved Isppa and Ispta limits for diagnostic ultrasound, 190 W cm-2 and 720 mW cm-2, respectively3. In contrast, recent studies have shown that non-destructive pulsed ultrasound stimulation that are within or near the range of diagnostic ultrasound intensity limits (LIPUS) can be effective to remotely and safely manipulate neural firing4,5,6,7,8, hormonal secretion9,10 and bioengineered cells11. Yet, the cellular and molecular mechanisms by which cells sense and respond to ultrasound remain unclear, precluding clinical translation of LIPUS. Hence, in the past few years, studies of artificial membranes, cultured cells and animals stimulated with ultrasound have gained momentum to reveal biophysical and physiological processes modulated by LIPUS12,13,14,15.
Sound consists of a vibration propagating through a physical medium. An ultrasound is a sound with a frequency above the human audible range (i.e., above 20 kHz). In a laboratory setting, ultrasound waves are generally produced by piezoelectric transducers that contain a material that vibrates in response to an electrical field oscillating in a specific high-frequency bandwidth. Two types of transducers exist: single element transducers and transducer arrays. Single element piezoelectric transducers possess a curved surface which acts as a focusing lens and hence concentrates acoustic energy into a defined region called the focal zone. Single element transducers are much cheaper and easier to operate than transducer arrays. This article will focus on single element transducers.
The size of the focal zone of a focused single element transducer depends on the geometric properties of the acoustic lens and on its acoustic frequency. To achieve a millimeter-size focal zone with a single element transducer, ultrasound frequencies in the MHz range are generally required. Unfortunately, acoustic waves at such frequency are very rapidly attenuated when propagated in a tenuous medium such as air. Thus, MHz ultrasound waves need to be generated and propagated to the sample in a denser material such as water. This constitutes the first challenge in integrating LIPUS modality to a microscope.
A second challenge is to minimize physical interfaces between materials with different acoustic impedances (which is a product of material density and the acoustic velocity) along the acoustic path. These interfaces can reflect, refract, scatter and absorb acoustic waves, making it difficult to quantify the amount of acoustic energy effectively delivered to a sample. They may also create unwanted mechanical artefacts. For instance, reflections produced perpendicular to acoustic mismatch impedance interfaces create backpropagating waves that interfere with forward-propagating ones. Along the interference path, the waves cancel each other at fixed regions of spaces called nodes and sum up at alternating regions called anti-nodes, creating so-called standing waves (Figure 1). It is important for the experimentalist to be able to control or eliminate these experimental interfaces in vitro as they may not exist in vivo.
Fluorescence measurement of optical reporters is a well-known method to interrogate transparent biological samples in real-time and with no physical disturbance. This approach is thus ideal for LIPUS studies as any physical probes present in the sonicated area will introduce mechanical artefacts. This protocol describes the implementation and operation of LIPUS to a commercial epi-fluorescence microscope.
1. Growing Cells on Acoustically-Transparent Polyester Film
2. LIPUS Implementation
3. Oblique Acoustic Excitation
4. Driving the Transducer
NOTE: Ultrasound transducers convert oscillating electrical energy into mechanical expansion/contraction of a piezoelectric material. This conversion produces energy loss in the form of heat energy. Hence, while transducers do possess a peak input voltage limit, they also possess an electrical power limit to avoid thermal damage to the piezoelectric element:
with the duty cycle the relative fraction of time of electrical simulation, P the electrical power (in Watts), Vrms the input root-mean-square voltage (in Volts) of the alternative voltage source and Z the electrical impedance (in Ohms).
with Vpp the peak-to-peak input voltage applied to the transducer.
5. Beam Alignment
6. Determination of Ultrasound Pulse Pressure and Intensity
7. Calcium-Sensitive/LIPUS Live-Cell Fluorescence Imaging
Figure 5 is an example of LIPUS experiment multiplexed with calcium imaging. Glioblastoma cells (A-172) were grown on EMPM coated polyester film in standard culture medium (supplemented with 10% serum and 1% antibiotics) and incubated with the calcium-sensitive fluorescent reporter Fluo-4 AM. Cells were imaged using a 10X immersion lens and illuminated with a white LED light source and fluorescence light was collected using a standard GFP filter set. LIPUS wa...
A main advantage of focused ultrasound is its ability to non-invasively deliver mechanical and/or thermal energy to biological samples with high spatio-temporal precision. Other techniques intended to mechanically stimulate cells usually employ invasive physical probes (e.g., cell-poking) or requires the interaction of high energy laser beams with foreign objects (e.g., optical tweezers). Magnetic heating can heat specific spatial locations inside biological samples but requires the presence of foreign ...
The authors have nothing to disclose.
We thank Drs. Mikhail Shapiro and Nikita Reznik for fruitful discussions. This work was supported by start-up funds from Western University of Health Sciences and NIH grant R21NS101384.
Name | Company | Catalog Number | Comments |
upright microscope with large working volume | Thorlabs | CERNA | |
upright microscope with large working volume | Scientifica | SliceScope | |
optomechanical components | Thorlabs | n/a | |
needle hydrophone | ONDA Corporation | HNP/C/R/A/T series + AH/G pre-amplifier | |
needle hydrophone | Precision Acoustics | n/a | |
fiber optic hydrophone | ONDA Corporation | HFO series | |
fiber optic hydrophone | Precision Acoustics | n/a | |
oscilloscope | Keysight Technology | DSOX2004A (4-channels 70MHz) | |
function generator | Keysight Technology | 33500B (20MHz single-channel) | |
RF power amplifier | Electronic Navigation Industries (ENI) | 325LA, 525LA, 240L, 350L, A075, 2100L, 3100LA | |
RF power amplifier | Electronics & Innovation (E&I) | ||
immersion ultrasound transducer | Olympus | focused immersion transdcuers | |
immersion ultrasound transducer | Benthowave Instrument | HiFu transducer BII-76 series | |
immersion ultrasound transducer | Precision Acoustics | Piezo-ceramic or HiFu transducers | |
immersion ultrasound transducer | Ultrasonic-S-lab | HiFu transducers made to order | |
high-density Matrigel | Corning | VWR 80094-330 | |
Mylar film 2.5 microns | Chemplex | CAT.NO:107 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved