A subscription to JoVE is required to view this content. Sign in or start your free trial.
The here introduced protocol allows characterization of the lung homing capacity of primary human lymphocytes under in vivo inflammatory conditions. Pulmonary infiltration of adoptively transferred human immune cells in a mouse model of allergic inflammation can be imaged and quantified by light-sheet fluorescence microscopy of chemically cleared lung tissue.
Overwhelming tissue accumulation of highly activated immune cells represents a hallmark of various chronic inflammatory diseases and emerged as an attractive therapeutic target in the clinical management of affected patients. In order to further optimize strategies aiming at therapeutic regulation of pathologically imbalanced tissue infiltration of pro-inflammatory immune cells, it will be of particular importance to achieve improved insights into disease- and organ-specific homing properties of peripheral lymphocytes. The here described experimental protocol allows to monitor lung accumulation of fluorescently labeled and adoptively transferred human lymphocytes in the context of papain-induced pulmonary inflammation. In contrast to standard in vitro assays frequently used for the analysis of immune cell migration and chemotaxis, the now introduced in vivo setting takes into account lung-specific aspects of tissue organization and the influence of the complex inflammatory scenario taking place in the living murine organism. Moreover, three-dimensional cross-sectional light-sheet fluorescence microscopic imaging does not only provide quantitative data on infiltrating immune cells, but also depicts the pattern of immune cell localization within the inflamed lung. Overall, we are able to introduce an innovative technique of high value for immunological research in the field of chronic inflammatory lung diseases, which can be easily applied by following the provided step-by-step protocol.
Classic inflammatory disorders of the lung, such as allergic asthma and chronic obstructive pulmonary disease (COPD), are well known to be driven by an increased recruitment of activated lymphocytes into the pulmonary tissue1,2. Lymphocyte-released cytokines (e.g., IL-4, IL-5, IL-9, IL-13, IFN-γ and TNF-α) further promote chemotaxis of innate and adaptive immune cells, induce fibrotic airway remodeling or directly damage the lung parenchyma2. So far, the underlying mechanisms responsible for the pathological accumulation of lymphocytes within lung tissue are not yet fully unde....
Experiments involving animals were performed in accordance with protocols approved by the relevant local authorities in Erlangen (Regierung von Unterfranken, Würzburg, Germany). Mice were housed under specific pathogen-free conditions. The collection of human blood was approved by the local ethical committee and the institutional review board of the University of Erlangen-Nuremberg. Each patient gave written informed consent.
1. Induce Allergic Lung Inflammation in Mice
The presented protocol describes an experimental mouse model, which allows monitoring and quantifying the accumulation of adoptively transferred human T lymphocytes in the lung via light-sheet fluorescence microscopy. Figure 1A provides a schematic overview of the in vivo steps of the experimental schedule. In order to guarantee reliable results, it is of substantial importance to ensure a good quality of the isolated and fluorescently labeled human CD4+ T ce.......
The here described experimental setting provides the opportunity to monitor the lung homing capacity of primary human immune cells under in vivo inflammatory conditions and thereby relevantly complements classically performed in vitro adhesion and chemotaxis assays. To take into account specific anatomic organ characteristics of the lung, important aspects of immune cell homing (including chemotaxis and cell distribution within the target organ) as well as the clinical relevance and transfera.......
The authors gratefully acknowledge funding by the DFG Collaborative Research Centers SFB 1181 and TRR 241. The Optical Imaging Centre Erlangen (OICE) and in particular Ralf Palmisano, Philipp Tripal and Tina Fraaß (Project Z2 of the DFG CRC 1181) are acknowledged for expert technical support for light-sheet fluorescence microscopic imaging.
....Name | Company | Catalog Number | Comments |
Agarose NEEO Ultra | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 2267.4 | |
AlexaFlour594 anti-human CD45 antibody | BioLegend, San Diego, USA | 304060 | |
Ammonium chloride | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | K2981 | |
Cannula 21 G | Becton, Dickinson and Company, Franklin Lakes, USA | 301300 | |
Cell proliferation dye eflour670 | eBioscience Inc., San Diego, USA | 65-0840-85 | |
CD4 MicroBeads, human | Miltenyi Biotech GmbH, Bergisch-Gladbach, Germany | 130-045-101 | |
EDTA (ethylenediaminetetraacetic acid) | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 8043.1 | |
Potassium-EDTA blood collection tube, 9 ml | Sarstedt AG & Co., Nümbrecht, Germany | 21066001 | |
Ethly cinnamate (ECi) | Sigma-Aldrich, Steinheim, Germany | 112372-100G | |
Ethanol ≥ 99.5 % (EtOH) | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 5054.3 | |
FBS (fetal bovine serum) Good Forte | PAN-Biotech GmbH, Aidenbach, Germany | P40-47500 | |
Filter 100 µm | VWR International Germany GmbH, Darmstadt, Germany | 732-2758 | |
Imaris Image Analysis Software 9.0.2 | Bitplane AG, Zurich, Switzerland | n.a. | |
ImspectorPro software | Abberior Instruments GmbH, Göttingen, Germany | n.a. | |
Ketamin | Inresa Arzneimittel GmbH, Freiburg, Germany | 3617KET-V | |
LaVision UltraMicroscope II | LaVision BioTec GmbH, Bielefeld, Germany | n.a. | |
MACS MultiStand | Miltenyi Biotech GmbH, Bergisch-Gladbach, Germany | 130-042-303 | |
Multifly cannula 20 G | Sarstedt AG & Co., Nümbrecht, Germany | 851638035 | |
30 G needle | B. Braun Melsungen AG, Melsungen, Hessen, Germany | 9161502 | |
Neubauer counting chamber | neoLab Migge GmbH, Heidelberg, Germany | C-1003 | |
Pattex Glue | Henkel AG & Co, Düsseldorf, Germany | PSK1C | |
LS column | Miltenyi Biotech GmbH, Bergisch-Gladbach, Germany | 130-042-401 | |
Lymphocyte Separation Media (Density 1,077 g/ml) | anprotec | AC-AF-0018 | |
RPMI medium | (Gibco) Life Technologies GmbH, Darmstadt, Germany | 61870-010 | |
Papain | Merck | 1,071,440,025 | |
PBS Dulbecco (phosphate buffered saline) | Biochrom GmbH, Berlin, Germany | L182-10 | |
PerCP/Cy5.5 anti-human CD4 | BioLegend, San Diego, USA | 317428 | |
PerCP/Cy5.5 mouse IgG2b, κ isotype Ctrl | BioLegend, San Diego, USA | 400337 | |
PFA (paraformaldehyde) | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 0335.1 | |
Potassium hydrogen carbonate | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | P7481 | |
Serological pipette 10 ml | Sarstedt AG & Co., Nümbrecht, Germany | 86.1254.001 | |
Syringe 1 ml | B. Braun Melsungen AG, Melsungen, Hessen, Germany | 9166017V | |
Syringe 5 ml | Becton, Dickinson and Company, Franklin Lakes, USA | 260067 | |
Syringe 20 ml | Becton, Dickinson and Company, Franklin Lakes, USA | 260069 | |
Tube 1.5 ml | Sarstedt AG & Co., Nümbrecht, Germany | 72,706,400 | |
Tube 2 ml | Sarstedt AG & Co., Nümbrecht, Germany | 72.695.400 | |
Tube 2 ml, brown | Sarstedt AG & Co., Nümbrecht, Germany | 72,695,001 | |
Tube 15 ml | Sarstedt AG & Co., Nümbrecht, Germany | 62.554.502 | |
Tube 50 ml | Sarstedt AG & Co., Nümbrecht, Germany | 62.547.254 | |
QuadroMACS Separator | Miltenyi Biotech GmbH, Bergisch-Gladbach, Germany | 130-090-976 | |
Xylazin (Rompun 2%) | Bayer Vital GmbH, Leverkusen, Germany | KPOBD32 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved