Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to study the pathophysiology of proliferative diabetic retinopathy by using patient-derived, surgically-excised, fibrovascular tissues for three-dimensional native tissue characterization and ex vivo culture. This ex vivo culture model is also amenable for testing or developing new treatments.

Abstract

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and one of the leading causes of blindness in working-age adults. No current animal models of diabetes and oxygen-induced retinopathy develop the full-range progressive changes manifested in human proliferative diabetic retinopathy (PDR). Therefore, understanding of the disease pathogenesis and pathophysiology has relied largely on the use of histological sections and vitreous samples in approaches that only provide steady-state information on the involved pathogenic factors. Increasing evidence indicates that dynamic cell-cell and cell-extracellular matrix (ECM) interactions in the context of three-dimensional (3D) microenvironments are essential for the mechanistic and functional studies towards the development of new treatment strategies. Therefore, we hypothesized that the pathological fibrovascular tissue surgically excised from eyes with PDR could be utilized to reliably unravel the cellular and molecular mechanisms of this devastating disease and to test the potential for novel clinical interventions. Towards this end, we developed a novel method for 3D ex vivo culture of surgically-excised patient-derived fibrovascular tissue (FT), which will serve as a relevant model of human PDR pathophysiology. The FTs are dissected into explants and embedded in fibrin matrix for ex vivo culture and 3D characterization. Whole-mount immunofluorescence of the native FTs and end-point cultures allows thorough investigation of tissue composition and multicellular processes, highlighting the importance of 3D tissue-level characterization for uncovering relevant features of PDR pathophysiology. This model will allow the simultaneous assessment of molecular mechanisms, cellular/tissue processes and treatment responses in the complex context of dynamic biochemical and physical interactions within the PDR tissue architecture and microenvironment. Since this model recapitulates PDR pathophysiology, it will also be amenable for testing or developing new treatments.

Introduction

DR is a serious ocular complication of diabetes, a disease that has reached enormous proportions in the last three decades1. Twenty years after diagnosis, virtually every patient with type 1 diabetes and 60% of patients with type 2 diabetes present signs of retinopathy, making diabetes per se one of the leading causes of blindness in working age adults2. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (non-PDR) and proliferative DR (PDR). The end-stage disease, PDR, is characterized by ischemia- and inflammation-induced neovascularization and f....

Protocol

This research was approved by the Institutional Review Board and Ethical committee of Helsinki University Hospital. Signed informed consent was obtained from each patient.

1. Preparation of Solutions, Media and Equipment

  1. Prepare the following equipment prior to collection of the fibrovascular tissue (FT) to ensure rapid processing.
    1. Sterile-autoclave two microdissection tweezers.
    2. Prepare 1x phosphate-buffered saline (PBS) by dissolving 1 pre-weighed PBS tablet.......

Representative Results

Deeper understanding of the PDR fibrovascular tissue properties and protein expression has relied mainly on vitreous samples and thin histological FT sections3,15,16,17. To develop a method for thorough investigation of the 3D tissue organization and multicellular physiopathological processes of PDR, we set out to utilize the surgically excised, patient-derived .......

Discussion

Considering the importance of relevant tissue microenvironment for reliable functional cell and molecular mechanistic results, it is imperative to find appropriate experimental models that provide this tissue environment. The herein described ex vivo PDR culture model for the fibrin-embedded FTs allows the investigation of the mechanisms of PDR pathophysiology in the native, complex and multicellular context of the PDR clinical samples.

Critical steps within the protocol are the prope.......

Acknowledgements

The authors are most grateful to the medical and surgical retina colleagues, nurses and whole staff of the Diabetic Unit and Vitreoretinal Surgery Unit at the Department of Ophthalmology, Helsinki University Hospital for actively participating in the recruitment of patients. We thank Biomedicum Molecular Imaging Unit for imaging facilities. We thank Anastasiya Chernenko for excellent technical assistance. This study was supported by grants from the Academy of Finland (KL), University of Helsinki (KL), Sigrid Juselius Foundation (KL), K. Albin Johansson Foundation (KL), Finnish Cancer Institute (KL), Karolinska Institutet (KL), Finnish Eye Foundation (SL), Eye and Tiss....

Materials

NameCompanyCatalog NumberComments
Material
MicroforcepsMedicon07.60.03Used for handling the FTs
Disposable Scalpels - SterileSwann-Morton0513Used for FT dissection
Culture dish, vented, 28 ml (60mm)Greiner Bio-One391-3210Used for dissection and for testing fibrin gel formation
Cell culture plates, 12-wellGreiner Bio-One392-0049Used for FT dissection and whole-mount immunofluorescence
Reagent/centrifuge tube with screw cap, 15 mLGreiner Bio-One391-3477
Reagent/centrifuge tube with screw cap, 50 mLGreiner Bio-One525-0384
Millex-GV Syringe Filter Unit, 0.22 µm, PVDFMilliporeSLGV033RSUsed to sterile-filter the fibrinogen solution
Syringe, 10 mLBraun4606108VUsed to sterile-filter the fibrinogen solution
Polypropylene Microcentrifuge Tubes, 1.5 mLFisherFB74031
Cell-Culture Treated Multidishes, 24-wellNunc142475Used for casting the FT/fibrin gels for native FT characterization and ex vivo culture
Cell culture plates, 96-well, U-bottomGreiner Bio-One392-0019Used for whole-mount immunofluorescence
Round/Flat Spatulas, Stainless SteelVWR82027-528Used for whole-mount immunofluorescence
Coverslips 22x22mm #1Menzel/Fisher15727582Used for mounting
Microscope slidesFisherKindler K102Used for mounting
Absorbent paperVWR115-0202Used for mounting
NameCompanyCatalog NumberComments
Reagents
PBS tabletsMedicago09-9400-100Used for preparing 1x PBS
Fibrinogen, Plasminogen-Depleted, Human PlasmaCalbiochem341578
Hanks Balanced Salt SolutionSigma-AldrichH9394-500MLUsed for preparing the fibrinogen and TA solution
Fetal bovine serumGibco10270106Used for preparing the blocking solution
Human SerumSigma-AldrichH4522Aliquoted in -20 °C, thaw before preparing the ex vivo culture media
Gentamicin Sulfate 10mg/mlBiowestL0011-100
Endothelial cell media MV KitPromocellC-22120Contains 500 ml of Endothelial Cell Growth Medium MV, 25 mL of fetal calf serum, 2 mL of endothelial cell growth supplement,  500 μL of recombinant human epidermal growth factor (10 μg/ mL) and 500 μL of hydrocortisone (1 g/ mL)
Sodium azideSigma-AldrichS2002Used for storage of the native and ex vivo cultured FTs. TOXIC: wear protective gloves and/or clothing, and eye and/or face protection. Use in fume hood.
AcetoneSigma-Aldrich32201-2.5L-MUsed to prepare the post-fixation solution. HARMFUL: wear protective gloves and/or clothing. Use in fume hood.
MethanolSigma-Aldrich32213Used to prepare the post-fixation solution. TOXIC: wear protective gloves and/or clothing. Use in fume hood.
Triton X-100 (octyl phenol ethoxylate)Sigma-AldrichT9284Used for whole-mount immunofluorescence. HARMFUL: wear protective gloves and/or clothing.
Hoechst 33342, 20mMLife Technologies62249For nuclei counterstaining. HARMFUL: wear protective gloves and/or clothing, and eye and/or face protection.
VECTASHIELD Antifade Mounting MediumVector LaboratoriesH-1000Wear protective gloves and/or clothing, and eye protection. Use in fume hood.
VECTASHIELD Antifade Mounting Medium with DAPIVector LaboratoriesH-1200Mounting medium with nuclei counterstaining. Wear protective gloves and/or clothing, and eye protection. Use in fume hood.
Eukitt Quick-hardening mounting mediumSigma-Aldrich03989-100mlTOXIC: Wear protective gloves and/or clothing, and eye protection. Use in fume hood.
Thrombin from bovine plasma, lyophilized powderSigma-AldrichT9549-500UN Dissolve at 100 units/ mL, aliquote and store at -20 °C, avoid repeated freeze/ thaw
Aprotinin from bovine lung, lyophilized powderSigmaA3428Dissolve at 50 mg/ mL, aliquote and store at -20 °C, avoid repeated freeze/ thaw
NameCompanyCatalog NumberComments
Growth factors
Recombinant human VEGFAR&D Systems293-VE-01050 ng/ mL final concentration
Recombinant human VEGFCR&D Systems752-VC-025200 ng/ mL final concentration
Recombinant human TGFβMilliporeGF3461 ng/ mL final concentration
Recombinant human bFGFMillipore01-10650 ng/ mL final concentration
NameCompanyCatalog NumberComments
Primary antibodies
CD31 (JC70A)DakoM0823Used at 1:100 dilution, Donkey anti Mouse Alexa 488 Secondary Ab
CD34 (QBEND10)DakoM716501-2Used at 1:100 dilution, Donkey anti Mouse Alexa 488 Secondary Ab
CD45 (2B11+PD7/26)DakoM070129-2Used at 1:100 dilution, Donkey anti Mouse Alexa 488 Secondary Ab
CD68ImmunoWayRLM3161Used at 1:100 dilution, Donkey anti Mouse Alexa 488 Secondary Ab
Cleaved caspase-3 (5A1E)Cell Signalling9664Used at 1:200 dilution, Goat anti Rabbit Alexa 594 Secondary Ab
ERG (EP111)DakoM731429-2Used at 1:100 dilution, Goat anti Rabbit Alexa 594 Secondary Ab
GFAPDakoZ0334Used at 1:100 dilution, Goat anti Rabbit Alexa 594 Secondary Ab
Ki67Leica MicrosystemsNCL-Ki67pUsed at 1:1500 dilution, Goat anti Rabbit Alexa 594 Secondary Ab
Lyve1R&D SystemsAF2089Used at 1:100 dilution, Donkey anti Goat Alexa 568 Secondary Ab
NG2MilliporeAB5320Used at 1:100 dilution, Goat anti Rabbit Alexa 594 Secondary Ab
Prox1ReliaTech102-PA32Used at 1:200 dilution, Goat anti Rabbit Alexa 568 Secondary Ab
Prox1R&D SystemsAF2727Used at 1:40 dilution, Chicken anti Goat Alexa 594 Secondary Ab
VEGFR3 (9D9F9)MilliporeMAB3757Used at 1:100 dilution, Donkey anti Mouse Alexa 488 Secondary Ab
α-SMA (1A4)SigmaC6198Used at 1:400 dilution, Cy3 conjugated
NameCompanyCatalog NumberComments
Secondary antibodies
Alexa Fluor488 Donkey Anti-Mouse IgGLife TechnologiesA-21202Used at 1:500 dilution
Alexa Fluor594 Goat Anti-Rabbit IgGInvitrogenA-11012Used at 1:500 dilution
Alexa Fluor568 Donkey anti-Goat IgGThermo ScientificA-11057Used at 1:500 dilution
Alexa Fluor568 Goat anti-Rabbit IgGThermo ScientificA-11036Used at 1:500 dilution
Alexa Fluor594 Chicken Anti-Goat IgGMolecular ProbesA-21468Used at 1:500 dilution
NameCompanyCatalog NumberComments
Microscopes
Axiovert 200 inverted epifluorescence microscopeZeissFor imaging of the fresh and fibrin-embedded FT
SZX9 upright dissection stereomicroscopeOlympusFor FT dissection
LSM 780 confocal microscopeZeissFor imaging of whole-mount immunostained FT
AxioImager.Z1 upright epifluorescence microscope with ApotomeZeissFor imaging of whole-mount immunostained FT

References

  1. Cho, N. H., et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 138, 271-281 (2018).
  2. Liew, G., Wong, V. W., Ho, I. V.

Explore More Articles

Ex VivoTissue CultureFibrovascularProliferative Diabetic RetinopathyMicrovascular ComplicationDiabetic RetinopathyThree dimensional Tissue LandscapeTransconjunctival Microincision Vitreoretinal SurgeryFibrinogenFibrin GelEx Vivo Culture MediumParaformaldehydePBSSodium Azide

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved