A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Short session (≤10 min) high intensity interval training (HIIT) is emerging as an alternative to longer exercise modalities, yet the shorter variants are rarely modeled in animal studies. Here, we describe a 10 min, 3 day a week, uphill treadmill HIIT protocol that enhances physical performance in male and female aged mice.
High intensity interval training (HIIT) is emerging as a therapeutic approach to prevent, delay, or ameliorate frailty. In particular short session HIIT, with regimens less than or equal to 10 min is of particular interest as several human studies feature routines as short as a few minutes a couple times a week. However, there is a paucity of animal studies that model the impacts of short session HIIT. Here, we describe a methodology for an individually tailored and progressive short session HIIT regimen of 10 min given 3 days a week for aged mice using an inclined treadmill. Our methodology also includes protocols for treadmill assessment. Mice are initially acclimatized to the treadmill and then given baseline flat and uphill treadmill assessments. Exercise sessions begin with a 3 min warm-up, then three intervals of 1 min at a fast pace, followed by 1 min at an active recovery pace. Following these intervals, the mice are given a final segment that starts at the fast pace and accelerates for 1 min. The HIIT protocol is individually tailored as the speed and intensity for each mouse are determined based upon initial anaerobic assessment scores. Additionally, we detail the conditions for increasing or decreasing the intensity for individual mice depending on performance. Finally, intensity is increased for all mice every two weeks. We previously reported in this protocol enhanced physical performance in aged male mice and here show it also increases treadmill performance in aged female mice. Advantages of our protocol include low administration time (about 15 min per 6 mice, 3 days a week), strategy for individualizing for mice to better model prescribed exercise, and a modular design that allows for the addition or removal of the number and length of intervals to titrate exercise benefits.
Regular exercise is effective at preventing or delaying many age-associated diseases such as sarcopenia and frailty1,2,3,4. However, less than 15% of those 65 and older meet recommendations of 150 min a week of moderate intensity exercise plus strength
training5,6. As the lack of time and lengthy sessions are common barriers to exercise, high intensity interval training (HIIT) is emerging as an alternative to traditional regimens. HIIT features multiple short bursts of intense activity that are interspersed with brief periods of active recovery, and there has been recent interest in identifying the shortest regimens that still yield beneficial outcomes. Such studies include 3 day a week regimens featuring total session times of 4 min7, 2-3 min8, 1.5 min9, a single min10, and even 40 s11.
Likewise, there has been substantial interest in HIIT animal models. A majority of studies used mice12,13,14,15,16,17,18,19,20,21 or rats22,23,24,25 and were performed using a treadmill, although a few others used swimming protocols26,27,28. A majority of these studies use VO2max to set the initial intensity of the exercise13,14,19,21,24. Additionally, although an often described benefit of HIIT is having shorter regimens, almost all of these identified studies feature regimens that last 30 min or longer11,12,13,14,15,18,19,21, with the exception of one with a slightly longer than 10 min regimen20, and another with 19 min across three different intensities16. To our knowledge, there are no reported animal studies that examine a 10 min or less HIIT regimen, or tailor the regimen to individual animals, with the exception of our published study17 that serves as the basis for this protocol.
Here, we describe a protocol for HIIT in aged mice designed to model individualized, short session (≤10 min) variants used recently in human studies7,8,9,10,11. The method includes a 10 min regimen on an inclined (25°) treadmill with a 3 min warm up, and four 1 min intervals at high intensity, interspersed with three 1 min active recovery segments. Advantages of the protocol include greater clinical relevance as it features strategies for tailoring intensity to individual animals, setting intensities that are not based on VO2max, thereby avoiding the need for metabolic treadmills, and modular design whereby the number of intervals and timings are easily adjustable. Additionally, within this protocol we provide instructions for two strategies for treadmill assessment, which include flat continuous and uphill interval, to examine endurance. Using these methods, we extend our previous findings that short session HIIT increased functional capacity in aged male mice17, and now demonstrate HIIT increases treadmill performance in aged female mice.
All studies and experimental protocols were approved by and in compliance with guidelines of the University at Buffalo and VA Western New York Animal Care and Use Committees.
1. Experiment Setup and General Advice
NOTE: A total of twenty-four female mice on a C57BL/6J background were used in this protocol starting at 23 months of age. The mice carried a conditional SIRTloxp-exon4-loxp mutation29, however, this was not induced in this experiment.
2. Acclimatizing Mice to Treadmill Apparatus
NOTE: Initiate acclimatization of mice 1 month prior to baseline experiments.
3. Flat Continuous Treadmill Assessment
4. Uphill Interval Treadmill Assessment
5. Short session High Intensity Interval Training
A total of twenty-five female mice were bred and aged in house. The C57BL/6J background mice carried a SIRT1loxp-exon4-loxp mutation29; however, this conditional knockout was not induced and therefore all mice exhibited full length Sirtuin1 (data not shown). At 24 months of age, mice were assessed for treadmill endurance and uphill sprint capacity prior to and after the administration of two months of HIIT exercise (n = 14), or remaini...
Benefits from short sessions are a key aspect of high intensity interval training that captures scientific and public interest. However, animal studies rarely investigate HIIT regimens that are 10 min or less. Here, we describe a protocol for a 10 min short session HIIT uphill treadmill exercise regimen that enhanced treadmill performance in aged female mice and which we previously have shown to increase physical performance in aged male mice17. A strength of our protocol is that in addition to th...
The authors have nothing to disclose.
We wish to thank the animal care personnel at the University at Buffalo Animal Laboratory Animal Facility. This research was supported by a Veteran Affairs Rehabilitation Research and Development Grant RX001066 and the Indian Trail Foundation.
Name | Company | Catalog Number | Comments |
Exer-3/6 Open Treadmill w/ Shock, Detection, auto-calibration and PC Interface/Software | Columbus Instruments | 1055-SDRM | The Columbus Instruments 3/6 treadmill allow up to 6 mice or 3 rats simultaneously. The device comes with controllers to allow manual control of treadmill belt speed and shock intensity, or connections to a computer and software to run and control these elements. |
Bleach | Varies | Varies | 0.25-0.5% Bleach solution (V/V) is used to clean the treadmill belt between sessions |
Ethanol | Varies | Varies | 70% ethanol solution (V/V) can alternatively be used to clean treadmill belt between runs and sesions. |
Make-up Brush (large) | Varies | Varies | A make-up brush provides a soft surface and ample length to motivate mice to continue exercise. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved