JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

脑结构三维形状建模与分析

Published: November 14th, 2019

DOI:

10.3791/59172

1School of Computer Science and Engineering, Kyungpook National University, 2Centre for Clinical Brain Sciences, University of Edinburgh, 3School of Computing and KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST)

我们引入了一种半自动方案,用于大脑结构的形状分析,包括使用开放软件进行图像分割,以及使用自动建模包进行进一步组式形状分析。在这里,我们演示了3D形状分析协议的每一步,其中海马分割从大脑MR图像。

大脑结构的统计形状分析被用来研究其结构变化与病理过程之间的关系。我们开发了一个软件包,用于准确和可靠的形状建模和基于组的分析。在这里,我们介绍了一个用于形状分析的管道,从单个三维形状建模到定量组形状分析。我们还使用开放式软件包描述了预处理和分段步骤。这个实用的指南将帮助研究人员在大脑结构的3D形状分析中节省时间和精力。

大脑结构的形状分析已成为研究其形态变化在病理过程中,如神经退行性疾病和老化1的首选工具。需要采用各种计算方法,1)从医学图像中准确划定目标结构的边界,2)以3D曲面网格的形式重建目标形状;3)通过形状参数化或曲面配准在单个形状模型中构建主体间对应关系,4)定量评估个人或群体之间的区域形状差异。在过去的几年中,许多方法已经引入神经成像研究,每个这些步骤。然而,尽管该领域取得了显著进展,但目前没有多少框架适用于研究。在本文中,我们使用自定义的形状建模工具和公开提供的图像分割工具描述大脑结构形状分析的每个步骤。

在这里,我们演示了大脑结构的形状分析框架,通过左右海马的形状分析使用成人对照和阿尔茨海默病患者的数据集。海马的萎缩被认为是神经退行性疾病2、3、4中的关键成像生物标志物。在我们的形状分析框架中,我们采用了目标结构的模板模型和形状建模过程中的模板到图像可变形的配准。模板模型对总体中目标结构的一般形状特征进行编码,并且它还提供了一个基线,用于通过各个模型与模板模型的传递关系量化各个模型之间的形状差异。在模板到图像的配准中,我们开发了一种拉普拉克表面变形方法,将模板模型与单个图像中的目标结构拟合,同时最大限度地减少模板模型5、6、7

Log in or to access full content. Learn more about your institution’s access to JoVE content here

脑MR图像是根据当地机构审查委员会和道德委员会批准的协议获得的。

注:形状建模和分析工具可从 NITRC 存储库下载:https://www.nitrc.org/projects/dtmframework/。GUI 软件 (DTMModeling.exe) 可在提取后执行。

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这里描述的形状建模过程已用于各种神经成像研究老化6,8,10和阿尔茨海默氏病5,9。特别是,这种形状建模方法在海马区654受试者8人的形状分析中显示了其准确性和敏感性。对软件和公开可用的软件,ShapeWork,LDDMM-TI和SPHARM-PDM的定量分.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

总之,我们描述了大脑结构形状分析的软件管道,包括(1)使用开放工具进行MR图像分割(2)使用可变形模板模型进行个体形状重建,以及(3)定量形状差异通过与模板模型的传递形状对应进行测量。在错误发现率(FDR)校正下进行统计分析,以调查与神经病理过程相关的大脑结构形态变化的意义。

我们的建模管道内部使用内部工具从主题图像构建模板模型。模板构造的步.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这项工作由韩国国家研究基金会(JP作为PI)资助。JK由庆保国立大学研究基金资助;MCVH由罗福戈慈善信托基金和爱丁堡皇家学会资助。海马分割改编自英国爱丁堡临床脑科学中心的Karen Ferguson博士编写的内部指南。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments

  1. Costafreda, S. G., et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. NeuroImage. 56 (1), 212-219 (2011).
  2. Platero, C., Lin, L., Tobar, M. C. Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease. Neuroinformatics. , 1-19 (2018).
  3. Valdés Hernández, M. D. C., et al. Rationale, design, and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke. Brain and behavior. 5 (12), e00415 (2015).
  4. Kalmady, S. V., et al. Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Research: Neuroimaging. 263, 93-102 (2017).
  5. Kim, J., Valdés Hernández, M. D. C., Royle, N. A., Park, J. Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification. IEEE Transactions on Medical Imaging. 34 (6), 1242-1261 (2015).
  6. Kim, J., et al. 3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model. Computer Methods and Programs in Biomedicine. 129, 51-62 (2016).
  7. Kim, J., Ryoo, H., Valdés Hernández, M. D. C., Royle, N. A., Park, J. Brain Ventricular Morphology Analysis Using a Set of Ventricular-Specific Feature Descriptors. International Symposium on Biomedical Simulation. , 141-149 (2014).
  8. Valdés Hernández, M. D. C., et al. Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiology of Aging. 52, 1-11 (2017).
  9. Lee, P., Ryoo, H., Park, J., Jeong, Y. Morphological and Microstructural Changes of the Hippocampus in Early MCI: A Study Utilizing the Alzheimer's Disease Neuroimaging Initiative Database. Journal of Clinical Neurology. 13 (2), 144-154 (2017).
  10. Cox, S. R., et al. Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men. Psychoneuroendocrinology. 78, 151-158 (2017).
  11. Sled, J. G., Zijdenbos, A. P., Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging. 17 (1), 87-97 (1998).
  12. Tustison, N. J., et al. N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging. 29 (6), 1310-1320 (2010).
  13. Zhang, Y., Brady, M., Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging. 20 (1), 45-57 (2001).
  14. Wardlaw, J. M., et al. Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. International Journal of Stroke. 6 (6), 547-559 (2011).
  15. Morey, R. A., et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage. 45 (3), 855-866 (2009).
  16. Boccardi, M., et al. Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. Journal of Alzheimer's Disease. 26 (s3), 61-75 (2011).
  17. Winterburn, J., et al. High-resolution In Vivo Manual Segmentation Protocol for Human Hippocampal Subfields Using 3T Magnetic Resonance Imaging. Journal of Visualized Experiments. (105), e51861 (2015).
  18. MacLullich, A., et al. Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology. 59 (2), 169-174 (2002).
  19. Gower, J. C. Generalized Procrustes analysis. Psychometrika. 40 (1), 33-51 (1975).
  20. Lorensen, W. E., Cline, H. E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics. , 163-169 (1987).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved