JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

Evaluation of Colorectal Cancer Risk and Prevalence by Stool DNA Integrity Detection

Published: June 8th, 2020

DOI:

10.3791/59426

1Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy, 2Diatech Pharmacogenetics srl

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

The presented diagnostic FL-DNA kit is a time-saving and user-friendly method to determine the reliable probability of the presence of colorectal cancer lesions.

Nowadays, stool DNA can be isolated and analyzed by several methods. The long fragments of DNA in stool can be detected by a qPCR assay, which provides a reliable probability of the presence of pre-neoplastic or neoplastic colorectal lesions. This method, called fluorescence long DNA (FL-DNA), is a fast, non-invasive procedure that is an improvement upon the primary prevention system. This method is based on evaluation of fecal DNA integrity by quantitative amplification of specific targets of genomic DNA. In particular, the evaluation of DNA fragments longer than 200 bp allows for detection of patients with colorectal lesions with very high specificity. However, this system and all currently available stool DNA tests present some general issues that need to be addressed (e.g., the frequency at which tests should be carried out and optimal number of stool samples collected at each timepoint for each individual). However, the main advantage of FL-DNA is the possibility to use it in association with a test currently used in the CRC screening program, known as the immunochemical-based fecal occult blood test (iFOBT). Indeed, both tests can be performed on the same sample, reducing costs and achieving a better prediction of the eventual presence of colorectal lesions.

Colorectal cancer (CRC) derives from a multi-step process in which healthy epithelium slowly develops into adenomas or polyps, which progress into malignant carcinomas over time1,2. Despite CRC's high incidence rate, a downward trend in the percentage of deaths has been observed over the past decade3. Indeed, early diagnostic tools adopted in screening programs have led to early detection and removal of pre-neoplastic adenomas or polyps4. However, due to the different technical limits, none of these methods is optimal. Indeed, in order to improve sensitivity ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Patients were recruited at the Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) of Meldola (FC, Italy) between 2013 and 2015. Enrolled patients were into protocol IRSTB002, approved by the Ethics Committee of IRST - IRCCS AVR (25/10/2012, ver. 1). All methods were performed in accordance with relevant guidelines and regulations. Written informed consent was obtained from all patients.

1. DNA extraction from stool

  1. Use a kit to prepare stool samples (see

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The workflow of this protocol is shown in Figure 1. The workflow provides two control steps and different actions according to these step results. First, if a sample presents unsuitable controls, the amplification must be repeated. Second, if the amplification is inhibited, the sample must be reprocessed from the beginning or classified as not valuable.

Figure 2 shows the fluorescence curves produced by positive and negative samples. (A) Shown.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Previous studies have demonstrated that DNA integrity analysis of stools extracted by manual and semi-automatic approaches can represent an alternative tool for the early detection of colorectal lesions7,8,9,10,11,12. Molecular, noninvasive screening tests have been developed over the years for the detection of colorectal can.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors have no acknowledgments.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1.5 mL and 2 mL polypropylene twist-lock tubes (DNase-, RNase-, DNA-, PCR inhibitor-free)Consumables required for DNA extraction and Real Time PCR
Absolute Ethanol (quality of analytical degree)Reagent required for DNA extraction
Benchtop centrifuge Maximum speed of 20000 x g. Instrument required for DNA extraction
EasyPGX analysis software version 2.0.0Diatech PharmacogeneticsRT800-SWAnalysis software 
EasyPGX centrifuge/vortex 8-well stripsDiatech PharmacogeneticsRT803Instrument recommended for the Real Time PCR assay
EasyPGX qPCR instrument 96 Diatech PharmacogeneticsRT800-96Instrument recommended for the Real Time PCR assay
EasyPGX ready FL-DNADiatech PharmacogeneticsRT029Kit required for the Real Time PCR assay
Micropipettes (volumes from 1 to 1.000 µL)Consumables required for DNA extraction and Real Time PCR
Powder-free disposable glovesConsumables required for DNA extraction and Real Time PCR
QIAamp Fast DNA StoolQiagen51604Kit recommended for the DNA extraction and purification from stool
Sterile filter tips DNase-, RNase-free (volumes from 1 to 1.000 µL)Consumables required for DNA extraction and Real Time PCR
Thermal block e.g. EasyPGX dry blockDiatech PharmacogeneticsRT801Instrument required for DNA extraction
Vortex e.g. EasyPGX centrifuge/vortex 1.5 ml Diatech PharmacogeneticsRT802Instrument required for DNA extraction

  1. Fearon, E. R. Molecular Genetics of Colorectal Cancer. Annual Review of Pathology. 6, 479-507 (2011).
  2. Sears, C. L., Garrett, W. S. Microbes, Microbiota, and Colon Cancer. Cell Host and Microbe. 15, 317-328 (2014).
  3. Levin, B., et al. Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline From the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 134, 1570-1595 (2008).
  4. Bosch, L. J., et al. Molecular tests for colorectal cancer screening. Clinical Colorectal Cancer. 10, 8-23 (2011).
  5. Ahlquist, D. A. Molecular detection of colorectal neoplasia. Gastroenterology. 138, 2127-2139 (2010).
  6. Calistri, D., et al. Fecal multiple molecular tests to detect colorectal cancer in stool. Clinical Gastroenterology and Hepatology. 1, 377-383 (2003).
  7. Calistri, D., et al. Detection of colorectal cancer by a quantitative fluorescence determination of DNA amplification in stool. Neoplasia. 6, 536-540 (2004).
  8. Calistri, D., et al. Quantitative fluorescence determination of long-fragment DNA in stool as a marker for the early detection of colorectal cancer. Cellular Oncology. 31, 11-17 (2009).
  9. Calistri, D., et al. Fecal DNA for noninvasive diagnosis of colorectal cancer in immunochemical fecal occult blood test-positive individuals. Cancer Epidemiology Biomarkers and Prevention. 19, 2647-2654 (2010).
  10. De Maio, G., et al. Circulating and stool nucleic acid analysis for colorectal cancer diagnosis. World Journal of Gastroenterology. 20, 957-967 (2014).
  11. Rengucci, C., et al. Improved stool DNA integrity method for early colorectal cancer diagnosis. Cancer Epidemiology Biomarkers and Prevention. 23, 2553-2560 (2014).

Erratum

Erratum: Evaluation of Colorectal Cancer Risk and Prevalence by Stool DNA Integrity Detection

An erratum was issued for: Evaluation of Colorectal Cancer Risk and Prevalence by Stool DNA Integrity Detection. An affiliation was updated.

The first affiliation was updated from:

Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)

to:

Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved