JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Behavior

利用机器人立体定向引导系统的立体脑电图(SEEG)方法的操作技术和细微差别

Published: June 9th, 2023

DOI:

10.3791/59456

1Department of Neurological Surgery, Houston Methodist, 2Department of Neurological Surgery, University of Pittsburgh Medical Center, 3Epilepsy Center, University of Pittsburgh Medical Center

使用立体定向机器人简化并加快了SEEG方法。在手术室中使用机器人之前,必须特别注意对患者的术前体积MRI的登记。机器人简化了手术过程,从而减少了手术时间并实现了准确的植入。

在过去的十年中,SEEG方法在北美获得了青睐,作为在癫痫手术前定位致痫区(EZ)的一种手段。最近,机器人立体定向引导系统在植入SEEG电极中的应用在许多癫痫中心变得越来越流行。使用机器人的技术在术前计划阶段需要极高的精度,然后在方法的手术部分简化该技术,因为机器人和外科医生协同工作以植入电极。这里详细介绍了使用机器人来引导SEEG电极植入的精确操作方法。还讨论了该程序的一个主要局限性,即它严重依赖将患者登记在术前体积磁共振图像(MRI)上的能力。总体而言,该手术已被证明具有低发病率和极低死亡率。使用机器人立体定向引导系统植入SEEG电极是传统手动植入策略的高效,快速,安全和准确的替代方案。

据估计,全球有1500万人患有难治性癫痫1。因此,这些患者中的许多很可能接受手术治疗。癫痫手术依赖于理论上的致痫区(EZ)的精确定位,以指导手术切除。Jean Tailaach和Jean Bancaud在1950年代开发了立体脑电图(SEEG)方法,作为一种基于皮质和深层结构中癫痫脑原 电生理学更准确地定位EZ的方法23。然而,直到最近,SEEG方法才开始在北美4中获得青睐。

作为SEEG方法的一部分,世界各地使用各种技术和技术,基于不同专业人员和癫痫中心的临床经验567。然而,最近,用于植入SEEG电极的手术技术已经发展,超越了经典使用基于手动头架的策略。具体来说,使用机器人立体定向引导系统已被证明是SEEG植入的准确替代方案8。具有外科专业知识的人可以安全有效地使用机器人植入,他们正在寻找更快,更自动化的电极植入方法。

本文讨论了使用机器人立体定向....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

此处使用的所有设备均已获得FDA批准,此处包含的协议构成我们机构的护理标准。因此,该协议的细节不需要IRB批准。

1. 植入前阶段

  1. 创建一个解剖电临床 (AEC) 假设。
    注意:AEC 假设的创建依赖于多种非侵入性技术的协调来识别潜在的 EZ。包括癫痫科医生、放射科医生和癫痫外科医生在内的专家小组通常会召开会议,讨论每位患者的临床数据,以创建 AEC 假说,该.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

使用SEEG方法后成功的绝对指标是患者的无癫痫发作,最终在成功的电极植入,成功的电生理记录以及成功切除EZ之后。 这种情况如图 1 所示。图 1的图 A和B显示了两个测试(分别为单正电子发射计算机断层扫描(SPECT)和磁脑电图(MEG),它们有助于创建AEC假设。但是,关于EZ的识别和后续切除的完成的讨论超出了本文的范围。.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

对AEC假说的细致定义以及对植入策略设计的特别关注,最终将决定SEEG方法对每个患者的成功。因此,仔细的术前手术计划至关重要,并且使手术相对简单,风险低。一般来说,最好将轨迹正交于矢状中线,从而促进将来更容易的解剖 - 电生理相关性,并在植入过程中获得更高的精度。但是,在某些情况下可以使用斜轨迹。具体来说,当倾斜轨迹允许对AEC假设中的多个目标进行采样时,这可能是可.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

作者没有致谢。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
2 mm drill bitDIXIKIP-ACS-510For opening the cranium
Coagulation Electrode DuraDIXIKIP-ACS-600for opening and coagulating the dura
Cordless driverStryker4405-000-000to drive the drill bit
Leksell Coordinate Frame GElekta14611For head fixation
Microdeep Depth ElectrodeDIXID08-**AMSEEG electrodes that are implanted, complete with: guide bolt and stylet, as described in manuscript.
ROSAMedtechn/astereotactic guidance system with robotic arm, complete with: robotic arm, calibration tool, registration laser, head frame attachment, and software, as described in the manuscript.
StyletDIXIACS-770S-10for creating a path through the parenchyma for the electrode

  1. World Health Organization. . Epilepsy. , (2018).
  2. Talairach, J., Bancaud, J. Stereotaxic approach to epilepsy. Progress in neurological surgery. 5, 297-354 (1973).
  3. Bancaud, J., Talairach, J. Functional organization of the supplementary motor area. Data obtained by stereo-E.E.G. Neurochirurgie. 13, 343-356 (1967).
  4. Jehi, L. The Epileptogenic Zone: Concept and Definition. Epilepsy Currents. 18 (1), 12-16 (2018).
  5. Nowell, M., et al. A novel method for implementation of frameless StereoEEG in epilepsy surgery. Operative Neurosurgery. 10 (4), 525-534 (2014).
  6. Abel, T. J., et al. Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique. Journal of Neurosurgery: Pediatrics. 1, 1-10 (2018).
  7. van der Loo, L. E., et al. Methodology, outcome, safety and in vivo accuracy in traditional frame-based stereoelectroencephalography. Acta neurochirurgica. 159 (9), 1733-1746 (2017).
  8. González-Martínez, J., et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 78 (2), 169-180 (2015).
  9. Mullin, J. P., Smithason, S., Gonzalez-Martinez, J. Stereo-electro-encephalo-graphy (SEEG) with robotic assistance in the presurgical evaluation of medical refractory epilepsy: a technical note. Journal of visualized experiments. , 112 (2016).
  10. Jones, J. C., et al. Techniques for placement of stereotactic electroencephalographic depth electrodes: Comparison of implantation and tracking accuracies in a cadaveric human study. Epilepsia. 59 (9), 1667-1675 (2018).
  11. Mullin, J. P., et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia. 57 (3), 386-401 (2016).
  12. Serletis, D., et al. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. Journal of Neurosurgery. 121, 1239-1246 (2014).
  13. Taussig, D., et al. Stereo-electroencephalography (SEEG) in 65 children: an effective and safe diagnostic method for pre-surgical diagnosis, independent of age. Epileptic Disorders. 16, 280-295 (2014).
  14. Munyon, C., et al. The 3-dimensional grid: a novel approach to stereoelectroencephalography. Neurosurgery. 11, 127-133 (2015).
  15. Ortler, M., et al. Frame-based vs frameless placement of intrahippocampal depth electrodes in patients with refractory epilepsy: a comparative in vivo (application) study. Neurosurgery. 68, 881-887 (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved