A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
A simple and reliable diet-induced rodent animal model for nonalcoholic steatohepatitis (NASH) is described, achieved through non-SPF housing of the animals and administration of a specific high-fat diet. We describe identification of hepatic and adipose immune cell subsets to recapitulate human immunological conditions by exposing mice to environmental germs.
Obesity is associated with chronic low-grade inflammation and insulin resistance, contributing to an increasing prevalence of chronic metabolic diseases, such as type 2 diabetes and nonalcoholic steatohepatitis (NASH). Recent research has established that pro-inflammatory immune cells infiltrate obese hypertrophic adipose tissue and liver. Given the emerging importance of immune cells in the context of metabolic homeostasis, there is a critical need to quantify and characterize their modification during the development of type 2 diabetes and NASH. However, animal models that induce pathophysiological features typical of human NASH are sparse.
In this article, we provide a detailed protocol to identify immune cell subsets isolated from liver and adipose tissue in a reliable mouse model of NASH, established by housing high-fat diet (HFD) mice under non-specific pathogen-free (SPF) conditions without a barrier for at least seven weeks. We demonstrate the handling of mice in non-SPF conditions, digestion of the tissues and identification of macrophages, natural killer (NK) cells, dendritic cells, B and T cell subsets by flow cytometry. Representative flow cytometry plots from SPF HFD mice and non-SPF mice are provided. To obtain reliable and interpretable data, the use of antibodies, accurate and precise methods for tissue digestion and proper gating in flow cytometry experiments are critical elements.
The intervention to restore physiological antigen exposure in mice by housing them in non-SPF conditions and unspecific exposure to microbial antigens could provide a relevant tool for investigating the link between immunological alterations, diet-induced obesity and related long term complications.
Obesity is a multifactorial disorder and a major risk factor for developing heart disease, stroke, nonalcoholic steatohepatitis (NASH), type 2 diabetes (T2D) and some types of cancer. The prevalence of obesity is rapidly increasing globally. Today, 2.1 billion people — nearly 30% of the world’s population — are either obese or overweight1. Obesity-associated insulin resistance can lead to T2D, when exhausted pancreatic islet beta cells fail to compensate for the increased need for insulin to maintain glucose homeostasis2.
Adipose tissue is composed of various cell types including adipocytes, endothelial cells, fibroblasts and immune cells. During progression of obesity, changes in the number and activity of immune cells can lead to low-grade inflammation of hypertrophic adipose tissue3,4. Specifically, it has been found that excessive energy intake, accompanied by chronically elevated levels of blood glucose, triglycerides and free fatty acids, leads to adipocyte hypoxia, endoplasmic reticulum stress, impaired mitochondrial function and enhanced cytokine secretion, resulting in the activation of pro-inflammatory adipose immune cells5,6. Past research has mainly focused on innate immunity, but more recently adaptive immune cells (T and B cells) have emerged as important regulators of glucose homeostasis. They possess inflammatory (including CD8+ T cells, Th1, and B cells) or primarily regulatory functions (including regulatory T (Treg) cells, Th2 cells) and can both exacerbate or protect against insulin resistance7,8,9.
Furthermore, several mechanisms were proposed to explain how obesity increases steatohepatitis, including increased production of cytokines by adipose tissue10. NASH, the progressive form of nonalcoholic fatty liver disease and a major health burden in developed countries, is histologically characterized by ballooned hepatocytes, lipid accumulation, fibrosis and pericellular inflammation and may progress to cirrhosis, end stage liver disease or hepatocellular carcinoma. Several regimen (for instance the methionine and choline deficient diet11) are known to induce NASH-like liver pathology in non-human animal models, but most of these approaches do not recapitulate human conditions of NASH and its metabolic consequences as they either require specific gene knockout, non-physiological dietary manipulations or lack insulin resistance typical of human NASH. Moreover, our understanding of the underlying mechanisms of metabolic diseases is currently based on experiments carried out with laboratory mice housed under standard specific pathogen free (SPF) conditions. Those barrier facilities are abnormally hygienic and do not consider the microbial diversity humans have to encounter, which may account for difficulties in the translation process of animal studies to clinical approaches12,13,14.
To investigate the different immune cell subsets in adipose tissue and liver during the development of insulin resistance and NASH in an advanced mouse model reproducing human immunological conditions, mice were housed in individual cages in semi sterile conditions without a barrier. Mice housed under antigen exposed conditions developed NASH-like liver pathology already after 15 weeks of high-fat diet (HFD) feeding13. Compared to age-matched SPF mice they developed macrovesicular steatosis, hepatic infiltration and activation of immune cells.
This manuscript describes a robust flow cytometry analysis to define and count immune cell subsets from mouse adipose tissue and liver in a model of NASH. Flow cytometry analysis allows the detection of multiple parameters of individual cells simultaneously in contrast to RT-PCR or immunohistochemistry approaches.
In summary, our study offers a mouse model of short-term HFD for investigating the development of insulin resistance and NASH and the underlying mechanisms that also exhibits fidelity to the human condition.
Access restricted. Please log in or start a trial to view this content.
This study was carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the Animal Welfare Act under the supervision of our institutional Animal Care and Use Committee. Animal protocols were conducted according to institutional ethical guidelines of the Charité Berlin, Germany, and were approved by the Landesamt für Gesundheit und Soziales and comply with the ARRIVE guidelines.
1. Diet-induced Animal Model of Steatohepatitis
2. Preparation of Reagents and Solutions
3. Generation of Single cell Suspensions
4. Surface Staining
5. Flow Cytometry Compensation, Acquisition, and Gating
Access restricted. Please log in or start a trial to view this content.
The protocol described allows the characterization of surface markers of innate and adaptive immune cells isolated from murine perigonadal adipose tissue and liver in a model of diet-induced NASH. In this model, NASH was induced by administration of HFD plus sucrose (6%) in drinking water for 7 to 15 weeks in C57Bl/6J mice, as previously reported13. Importantly, mice were housed in semi sterile conditions and, thus, exposed to environmental antigens throughout the experiment. HFD fed mice housed i...
Access restricted. Please log in or start a trial to view this content.
Steatohepatitis has a strong association with metabolic abnormalities such as obesity, insulin resistance and dyslipidemia15. Multiple studies indicate that adipose tissue inflammation can drive the pathogenesis of type 2 diabetes, including altered levels of cells of both the innate and adaptive immune system4,5,16,17. In addition, it has been found that obesity modulat...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank Anke Jurisch, Diana Woellner, Dr. Kathrin Witte and Cornelia Heckmann for assistance with experimental procedures and Benjamin Tiburzy from Biolegend for helpful comments on the gating strategy. J.S. was supported by the Helmholtz Grant (ICEMED). This study was supported by grants from the Clinical Research Unit of the Berlin Institute of Health (BIH), the “BCRT-grant” by the German Federal Ministry of Education and Research and the Einstein Foundation. K.S.-B. and H.-D.V. are funded by FOR2165.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
100 µm cell strainers | Falcon | 352340 | |
1 mL syringe | BD | 309659 | |
26 G x 5/8 needles | BD | 305115 | |
35 mm Petri Dishes | Falcon | 353001 | |
40 µm cell strainers | Falcon | 352340 | |
ACK lysis buffer | GIBCO | A1049201 | |
Alexa Fluor 700 anti-mouse CD45 | Biolegend | 103127 | AB_493714 (BioLegend Cat. No. 103127) |
Analysis software | FlowJo 10.0.8 software | ||
APC anti-mouse CD11c Antibody | Biolegend | 117309 | AB_313778 (BioLegend Cat. No. 117309) |
APC anti-mouse KLRG1 (MAFA) Antibody | Biolegend | 138411 | AB_10645509 (BioLegend Cat. No. 138411) |
BV421 anti-mouse CD127 Antibody | Biolegend | 135023 | AB_10897948 (BioLegend Cat. No. 135023) |
BV421 anti-mouse F4/80 Antibody | Biolegend | 123131 | AB_10901171 (BioLegend Cat. No. 123131) |
BV605 anti-mouse CD279 (PD-1) Antibody | Biolegend | 135219 | AB_11125371 (BioLegend Cat. No. 135219) |
BV605 anti-mouse NK-1.1 Antibody | Biolegend | 108739 | AB_2562273 (BioLegend Cat. No. 108739) |
BV650 anti-mouse/human CD11b Antibody | Biolegend | 101239 | AB_11125575 (BioLegend Cat. No. 101239) |
BV711 anti-mouse/human B220 Antibody | Biolegend | 103255 | AB_2563491 (BioLegend Cat. No. 103255) |
BV785 anti-mouse CD8a Antibody | Biolegend | 100749 | AB_11218801 (BioLegend Cat. No. 100749) |
C57Bl/6J mice, male, 5 weeks old | Forschungseinrichtungen für experimentelle Medizin (FEM) | ||
CaCl2 | Charité - Universitätsmedizin Berlin | A119.1 | |
Collagenase NB 4G Proved Grade | SERVA | 11427513 | |
Collagenase Typ I | Worthington | LS004197 | |
Conical centrifuge tube 15mL | Falcon | 352096 | |
Conical centrifuge tube 50 mL | Falcon | 352070 | |
DNAse | Sigma-Aldrich | 4716728001 | |
Fetal bovine serum | Biochrom | S0115 | |
Filter 30µm | Celltrics | 400422316 | |
FITC anti-mouse CD3 Antibody | Biolegend | 100203 | AB_312660 (BioLegend Cat. No. 100203) |
Flow cytometry | BD-LSR Fortessa | ||
Forceps | Sigma-Aldrich | F4142-1EA | |
HBSS | Bioanalytic GmBH | 085021-0500 | |
High-fat diet | SSNIF | E15741–34 | 60 kJ% from fat, 19 kJ% from proteins, and 21 kJ% from carbohydrates |
micro dissecting scissors | Sigma-Aldrich | S3146 | used for dissection purposes |
PE anti-mouse CD25 Antibody | Biolegend | 101903 | AB_312846 (BioLegend Cat. No. 101903) |
PE/Cy7 anti-mouse CD62L Antibody | Biolegend | 104417 | AB_313102 (BioLegend Cat. No. 104417) |
PE/Cy7 anti-mouse I-A/I-E (MHCII) Antibody | Biolegend | 107629 | AB_2290801 (BioLegend Cat. No. 107629) |
PE/Dazzle 594 anti-mouse CD4 Antibody | Biolegend | 100565 | AB_2563684 (BioLegend Cat. No. 100565) |
Percoll solution | Biochrom | L6115 | |
PerCP/Cy5.5 anti-mouse CD44 Antibody | Biolegend | 103031 | AB_2076206 (BioLegend Cat. No. 103031) |
PerCP/Cy5.5 anti-mouse Gr-1 Antibody | Biolegend | 108427 | AB_893561 (BioLegend Cat. No. 108427) |
Phosphate buffered saline | Gibco | 12559069 | |
Round-Bottom Tubes with cell strainer cap | STEMCELL Technologies | 38030 | |
TruStain fcX anti-mouse CD16/32 | Biolegend | 101301 | AB_312800 (BioLegend Cat. No. 101301) |
Trypan Blue | Sigma-Aldrich | T6146 | |
Zombie NIR Fixable Viability Kit | Biolegend | 423105 | viablity stain |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved