A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Presented here is a protocol for the spontaneous generation of neurospheres enriched in neural progenitor cells from high density plated neurons. During the same experiment, when neurons are plated at a lower density, the protocol also results in prolonged primary rat neuron cultures.
Primary neuron culture is an essential technique in the field of neuroscience. To gain deeper mechanistic insights into the brain, it is essential to have a robust in vitro model that can be exploited for various neurobiology studies. Though primary neuron cultures (i.e., long-term hippocampal cultures) have provided scientists with models, it does not yet represent the complexity of brain network completely. In the wake of these limitations, a new model has emerged using neurospheres, which bears a closer resemblance to the brain tissue. The present protocol describes the plating of high and low densities of mixed cortical and hippocampal neurons isolated from the embryo of embryonic day 14-16 Sprague Dawley rats. This allows for the generation of neurospheres and long-term primary neuron culture as two independent platforms to conduct further studies. This process is extremely simple and cost-effective, as it minimizes several steps and reagents previously deemed essential for neuron culture. This is a robust protocol with minimal requirements that can be performed with achievable results and further used for a diversity of studies related to neuroscience.
The brain is an intricate circuitry of neuronal and non-neuronal cells. For years, scientists have been trying to gain insight into this complex machinery. To do so, neuroscientists initially resorted to various transformed nerve-based cell lines for investigations. However, the inability of these clonal cell lines to form strong synaptic connections and proper axons or dendrites have shifted scientific interest to primary neuron cultures1,2. The most exciting aspect of primary neuron culture is that it creates an opportunity to observe and manipulate living neurons3. Moreover, it is less complex compared to neural tissue, which makes it an ideal candidate for studying the function and transport of various neuronal proteins. Recently, several developments in the fields of microscopy, genomics, and proteomics have generated new opportunities for neuroscientists to exploit neuron cultures4.
Primary cultures have allowed neuroscientists to explore the molecular mechanisms behind neural development, analyze various neural signaling pathways, and develop a more coherent understanding of synapsis. Though a number of methods have reported cultures from primary neurons (mostly from the hippocampal origin5,6,7), a unified protocol with a chemically defined medium that enables long-term culture of neurons is still needed. However, neurons plated at a low density are most often observed, which do not survive long-term, likely due to the lack of trophic support8 that is provided by the adjacent neurons and glial cells. Some methods have even suggested co-culturing of the primary neurons with glial cells, wherein the glial cells are used as a feeder layer9. However, glial cells pose a lot of problems due to their overgrowth, which sometimes override the neuronal growth10. Hence, considering the problems above, a simpler and more cost-effective primary neural culture protocol is required, which can be used by both neurobiologists and neurochemists for investigations.
A primary neuron culture is essentially a form of 2D culture and does not represent the plasticity, spatial integrity, or heterogeneity of the brain. This has given rise to the need for a more believable 3D model called neurospheres11,12. Neurospheres present a novel platform to neuroscientists, with a closer resemblance to the real, in vivo brain13. Neurospheres are non-adherent 3D clusters of cells that are rich in neural stem cells (NSCs), neural progenitor cells (NPCs), neurons, and astrocytes. They are an excellent source for the isolation of neural stem cells and neural progenitor cells, which can be used to study differentiation into various neuronal and non-neuronal lineages. Again, variability within neurosphere cultures produced using the previously reported protocols presents a barrier to the formulation of a unified neurosphere culture protocol14.
This manuscript presents a protocol in which it is possible to generate both 2D and 3D platforms by alternating cell plating densities from a mixed cortical and hippocampal culture. It is observed that within 7 days free-floating neurospheres are obtained from high-density plated neurons isolated from E14-E16 Sprague Dawley rat embryo, which upon further culture, form bridges and interconnections through radial glial-like extensions. Similarly, in the low density plated neurons, a primary neuron culture that can be maintained for up to 30 days is obtained by changing the maintenance medium twice per week.
All experimental procedures involving animal were approved by the Institutional Animal Ethics Committee of CSIR-Indian Institute of Chemical Biology (IICB/AEC/Meeting/Apr/2018/1).
1. Reagent and media preparation
2. Preparation of coverslips
3. Preparation of poly-D-lysine coated plates for neuron culture
4. Removal and decapitation of the fetus
NOTE: Sterilize all surgical instruments packed in aluminum foil in an autoclave at 121 °C (15 psi) for 30 min. This includes a pair of blunt-end scissors, forceps, fine forceps, two fine scissors, and one artery forceps for the entire procedure.
5. Removal of brain and dissection of the cortex with hippocampus
6. Dissociation of cortical and hippocampal tissue into single neurons
In this protocol, a simple strategy has been elucidated in which variable cell plating densities from two different neural screening platforms are obtained. Figure 1A,B illustrates the adherence of cells after 4 h of plating the neurons in high and low density plated cells, respectively. On observing the proper adherence of the neurons as shown in Figure 1, the plating medium was replaced by maintenance medium in...
This protocol describes that how by altering the cell plating densities of primary neurons, two variable neuronal platforms are obtained. Though this is a simple method, each step must be meticulously performed to achieve the desired results. Other previous methods have either reported long-term primary neuron cultures or neurosphere cultures. Most primary neuron culture protocols have involved the culturing of hippocampal neurons for 3-5 weeks, but most have failed, as the neurons die and wither away due to lo...
The authors declare no competing financial interests.
We thank CSIR-IICB animal facility. G. D. thanks ICMR, J. K. and V. G. thank DST Inspire, and D. M. thanks DBT, India for their fellowships. S. G. kindly acknowledges SERB (EMR/2015/002230) India for providing financial support.
Name | Company | Catalog Number | Comments |
Anti-GFAP | Abcam | AB7260 | |
Anti- Nestin | Abcam | AB92391 | |
Anti-O4 | Millipore | MAB345 | |
Anti-Tau | Abcam | AB76128 | |
Anti-Tuj1 | Millipore | MAB1637 | |
B27 Serum Free Supplement | Gibco | 17504-044 | |
Cell Counter | Life technologies | Countess II FL | |
CO2 Incubator | Eppendorf | Galaxy 170 R | |
D-glucose | SDFCL | 38450-K05 | |
Ethanol | Merck Millipore | 100983 | |
Fluorescence Microscope | Olympus | IX83 Model | |
Formaldehyde | Sigma Aldrich | 47608 | |
GlutaMax-I Supplement | Gibco | 35050-061 | |
GtXMs IgG Fluor | Millipore | AP1814 | |
GtXMs IgG (H+L) | Millipore | AP124C | |
HEPES | SRL | 16826 | |
Hoechst 33258 | Calbiochem | 382061 | |
Horse Serum | HiMedia | RM10674 | |
Hydrochloric Acid | Rankem | H0100 | |
Laminar Hood | BioBase | BBS-V1800 | |
MEM Eagle’s with Earle’s BSS | Sigma Aldrich | M-2279 | |
Microscope | Dewinter | Victory Model | |
Neurobasal Medium | Gibco | 21103-049 | |
Plasticware (24 well plate, cell strainers, and low adherence plates) | BD Falcon | 353047, 352350 and 3471 | |
90 mm Petridishes | Himedia | PW001 | |
Penicillin/Streptomycin | Gibco | 15140-122 | |
Poly-D-Lysine | Millipore | A.003.E | |
Potassium Chloride | Fisher Scientific | BP366-500 | |
Potassium Phosphate Monobasic | Merck | MI6M562401 | |
Sodium Chloride | Qualigem | 15918 | |
Sodium Phosphate Dibasic | Merck | MI6M562328 | |
Stereomicrosope | Dewinter | Zoomstar Model | |
Triton-X 100 | SRL | 2020130 | |
Trypan Blue Solution | Gibco | 15250-061 | |
0.25 % Trypsin-EDTA | Gibco | 25200-072 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved