A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of the protocol is to illustrate the different assays relating to viral entry that can be used to identify candidate viral entry inhibitors.
Antiviral assays that mechanistically examine viral entry are pertinent to discern at which step the evaluated agents are most effective, and allow for the identification of candidate viral entry inhibitors. Here, we present the experimental approaches for the identification of small molecules capable of blocking infection by the non-enveloped coxsackievirus A16 (CVA16) through targeting the virus particles or specific steps in early viral entry. Assays include the time-of-drug-addition analysis, flow cytometry-based viral binding assay, and viral inactivation assay. We also present a molecular docking protocol utilizing virus capsid proteins to predict potential residues targeted by the antiviral compounds. These assays should help in the identification of candidate antiviral agents that act on viral entry. Future directions can explore these possible inhibitors for further drug development.
Hand, foot, and mouth disease (HFMD) is a disease most commonly caused by coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) in young children. Recently across the Asia-Pacific region, there has been a significant uptick in CVA16-induced HFMD. While symptoms can be mild, severe complications can occur that affect the brain and the heart, with potential fatality1,2. At present, there are no licensed antiviral therapies or vaccinations available for CVA16, and thus there is a pressing need to develop antiviral strategies to curb future outbreaks and the associated complications.
CVA16 is a non-enveloped virus which has an icosahedral capsid assembled from pentamers that each contain 4 structural proteins namely VP1, VP2, VP3, and VP4. Encircling each five-fold axis in the pentamer is a 'canyon' region that shows as a depression and is noted for its role in receptor binding3. At the bottom of this canyon lies a hydrophobic pocket in the VP1 region that contains a natural fatty ligand named sphingosine (SPH). Cellular receptors, such as human P selectin glycoprotein ligand 1 (PSGL-1) and scavenger receptor class B member 2 (SCARB2), have been suggested to play a role in viral binding by displacing this ligand which results in conformational changes to the capsid and the subsequent ejection of viral genome into the host cell4,5,6. Identifying possible inhibitors that block the successive events in the viral entry process could provide potential therapeutic strategies against CVA16 infection.
The steps in the virus life cycle can be dissected through experimental approaches as targets to help identify mode-specific antiviral agents. A time-of-drug-addition analysis examines the drug treatment effect at different times during the viral infection, including pre-entry (added prior to the virus infection), entry (added concurrent to the virus infection), and post-entry (added following the virus infection)7. The impact can be assessed using a standard plaque assay by quantitating the number of viral plaques formed in each of the treatment conditions. The flow cytometry-based viral binding assay determines if the drug prevents viral attachment to host cells. This is achieved by shifting the temperature from 37 °C, at which the majority of human virus infections occur, to 4 °C, where the virions are able to bind to the host cell surface but are unable to enter the cells7. The cell membrane-bound virus particles are then quantified through immunostaining against viral antigens and assessed by flow cytometry. The viral inactivation assay on the other hand helps to assess potential physical interactions of the drug with free virus particles, either shielding or neutralizing the virions, or causing aggregations or conformational changes that render them inactive for subsequent interactions with the host cell surface during the infection8,9. In this experiment, the viral inoculum is allowed to first incubate with the drug before being diluted to titrate out the drug prior to infecting the host cell monolayer and performing a standard plaque assay8. Finally, molecular docking is a powerful tool to predict potential drug interaction sites on the virion surface, including the viral glycoproteins from enveloped viruses and the viral capsid proteins from non-enveloped viruses, by using computational algorithms. This helps to mechanistically pinpoint targets of the drug's mode of action and provide useful information that can be further validated by downstream assays.
We recently employed the above described methods to identify antiviral compounds that efficiently blocked infection by the non-enveloped CVA169. Herein, the detailed protocols that were used are described and discussed.
Access restricted. Please log in or start a trial to view this content.
NOTE: All cell culture and virus infections must be conducted in certified biosafety hoods that are appropriate for the biosafety level of the samples being handled. The two tannin-class of small molecules chebulagic acid (CHLA) and punicalagin (PUG), that were observed to efficiently block CVA16 infection9, are used as examples of candidate inhibitory agents. For basic principles in virology techniques, virus propagation, determination of virus titer, and concepts of plaque forming units (PFU) or multiplicity of infection (MOI), the reader is referred to reference10.
1. Cell Culture, Virus Preparation, Compound Preparation, and Compound Cytotoxicity
2. Time-of-drug-addition Assay
3. Flow Cytometry-based Binding Assay
4. Viral Inactivation Assay
5. Molecular Docking Analysis
Access restricted. Please log in or start a trial to view this content.
The time-of-drug-addition assay is indicated in Figure 1 and shows the influence from treatment using the small molecules CHLA and PUG on CVA16 infection either pre-viral entry (pretreatment), during viral entry (co-addition), or post-viral entry (post-infection). Both small molecules only produced marginal impact against CVA16 infectivity whether in the pretreatment of the host cells prior to viral infection (Figure 1A) or in th...
Access restricted. Please log in or start a trial to view this content.
In this report, we described the protocols that are useful for the identification of antiviral candidates that target viral entry, in particular against the non-enveloped CVA16. The assays are designed in ways to dissect the early events during viral entry, which is helpful to clarify the mechanism(s) of action and potential target(s) of the test agents' antiviral activity. The 'time-of-drug-addition assay' permits to broadly determine the potential target of the test compounds, for instance the uninfected ho...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no conflict of interest.
The authors are grateful to Dr. Joshua Beckham at the University of Texas at Austin for technical support with molecular docking. This study was partly supported by funding from the Ministry of Science and Technology of Taiwan (MOST107-2320-B-037-002 to C.-J.L. and L.-T.L.; MOST106-2320-B-038-021 and MOST107-2320-B-038-034-MY3 to L.-T.L.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
4% Paraformaldehyde | Sigma | AL-158127-500G | |
Alexa 488-conjugated anti-mouse IgG | Invitrogen | A11029 | |
Amphotericin B | GIBCO | 15290-018 | |
Anti-VP1 antibody | Merck-Millipore | MAB979 | Anti-Enterovirus 71 Antibody, cross-reacts with Coxsackie A16, clone 422-8D-4C-4D |
Beckman Coulter Cytometer | Beckman Coulter | FC500 | |
Corina | Molecular Networks GmbH | ||
Crystal violet | Sigma | C3886-100G | |
DMEM | GIBCO | 11995-040 | |
DMSO | Sigma | D5879 | |
FBS | GIBCO | 26140-079 | |
Formaldehyde | Sigma | F8775 | |
Graphpad Prism | GraphPad | ||
Heparin sodium salt | Sigma | H3393 | |
In vitro toxicology assay kit, XTT-based | Sigma | TOX2 | |
Methylcellulose | Sigma | M0512-100G | |
PBS pH 7.4 | GIBCO | 10010023 | |
Penicillin-Streptomycin | GIBCO | 15070-063 | |
PyMol | Schrödinger | ||
UCSF Chimera | University of California, San Francisco |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved