Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol for niobium oxide films deposition by reactive sputtering with different oxygen flow rates for use as an electron transport layer in perovskite solar cells.

Abstract

Reactive sputtering is a versatile technique used to form compact films with excellent homogeneity. In addition, it allows easy control over deposition parameters such as gas flow rate that results in changes on composition and thus in the film required properties. In this report, reactive sputtering is used to deposit niobium oxide films. A niobium target is used as metal source and different oxygen flow rates to deposit niobium oxide films. The oxygen flow rate was changed from 3 to 10 sccm. The films deposited under low oxygen flow rates show higher electrical conductivity and provide better perovskite solar cells when used as electron transport layer.

Introduction

The sputtering technique is widely used to deposit high-quality films. Its main application is in the semiconductor industry, although it is also used in surface coating for improvement in mechanical properties, and reflective layers1. The main advantage of sputtering is the possibility to deposit different materials over different substrates; the good reproducibility and control over the deposition parameters. The sputtering technique allows deposition of homogeneous films, with good adhesion over large areas and at low-cost when compared with other deposition methods like chemical vapor deposition (CVD), molecular beam epitaxy (MBE) and atomi....

Protocol

1. Etching and cleaning the substrate

  1. Using a glass cutting system, form 2.5 x 2.5 cm substrates of fluoride thin oxide (FTO).
  2. Protect part of the substrate surface with a thermal tape leaving 0.5 cm of one side exposed.
  3. Deposit a small amount of zinc powder (enough to cover the area to be etched) on the top of the exposed FTO and drop concentrated hydrochloric acid (HCl) on the zinc powder slowly until all zinc powder is consumed by the reaction. Immediately after, rinse the substrate wit.......

Representative Results

In the sputtering system, the deposition rate is strongly influenced by the oxygen flow rate. The deposition rate decreases when the oxygen flow is increased. Considering the present conditions of the target area used and plasma power, it is observed that from 3 to 4 sccm there is an expressive decrease on the deposition rate, however, when the oxygen is increased from 4 to 10 sccm it becomes less pronounced. In the regime of 3 sccm the deposition rate is 1.1 nm/s, decreasing abruptly to 0.1 nm/s for 10 sccm as seen in <.......

Discussion

The niobium oxide films prepared in this work was used as electron transport layer in perovskite solar cells. The most important characteristic required for an electron transport layer is to prevent recombination, blocking holes and transferring efficiently electrons.

In this respect the use of reactive sputtering technique is advantageous since it produces dense and compact films. Also, as already mentioned, compared to sol-gel, anodization, hydrothermal, and chemical vapor deposition synthes.......

Acknowledgements

The work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Centro de Desenvolvimento de Materiais Cerâmicos (CDMF- FAPESP Nº 2013/07296-2, 2017/11072-3, 2013/09963-6 and 2017/18916-2). Special thanks to Professor Máximo Siu Li for PL measurements.

....

Materials

NameCompanyCatalog NumberComments
2-propanolMerck67-63-0solvent with maximum of 0.005% H2O
4-tert-butylpyridineSigma Aldrich3978-81-2chemical with 96% purity
acetonitrileSigma Aldrich75-05-8anhydrous solvent , 99.8% purity
bis(trifluoromethane)sulfonimide lithium saltSigma Aldrich90076-65-6chemical with ≥99.95% purity
chlorobenzeneSigma Aldrich108-90-7anhydrous solvent , 99.8% purity
ethanolSigma Aldrich200-578-6solvent
Fluorine doped tin oxide (SnO2:F) glass substrateSolaronixTCO22-7/LIsubstrate to deposit films
Kaptom tapeUsinainfo04227thermal tape used to cover the substrates
Kurt J Lesker magnetron sputtering systemKurt J Lesker------Sputtering equipment used to deposit compact films
Lead (II) iodideAlfa Aesar10101-63-0PbI2 salt- 99.998% purity
methylammonium iodideDyesol14965-49-2CH3NH3I salt
N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis (4-methoxyphenyl)-9,9′-spirobi [9H-fluorene]-2,2′,7,7′-tetramineSigma Aldrich207739-72-8Spiro-OMeTAD salt, 99% purity
Niobium target of 3”CBMM- Brazilian Metallurgy and Mining Company------niobium sputtering target used in the sputtering system
N-N dimethylformamideMerck68-12-2solvent with maximum of 0.003% H2O
TiO2 pasteDyesolDSL 30NR-Dtitanium dioxide paste
tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide]Dyesol329768935FK 209 Co(III) TFSL salt

References

  1. Wasa, K., Kitabatake, M., Adachi, H. . Thin film materials technology : sputtering of compound materials. , (2004).
  2. Kelly, P. J., Arnell, R. D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 56, 159-172 (2000....

Explore More Articles

Reactive SputteringNiobium Oxide FilmsOxygen Flow RateThin Film DepositionSubstrate PreparationSputtering Process ParametersFilm ThicknessPlasma CleaningImpedance Matching

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved