JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Silenciando a faísca: Edição do genoma CRISPR/Cas9 em peixes fraca elétricos

Published: October 27th, 2019

DOI:

10.3791/60253

1Department of Integrative Biology, Michigan State University, 2Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Humboldt University, 3Department of Biology, Cape Breton University

Aqui, um protocolo é apresentado para produzir e traseira CRISPR / Cas9 genoma nocaute peixeelétrico. Descritos em detalhes são os requisitos necessários de biologia molecular, reprodução e criação para um ginásio e um mormyrid, e técnicas de injeção para produzir larvas DelF 0 induzidas por Cas9.

A eletrorecepção e a eletrogênese mudaram na história evolutiva dos vertebrados. Há um grau impressionante de convergência nesses fenótipos derivados independentemente, que compartilham uma arquitetura genética comum. Isto é talvez melhor exemplificado pelas numerosas características convergentes de gymnotiformes e mormyrids, dois folheados teleost ricos em espécies que produzem e detectam campos elétricos fracos e são chamados de peixes fracamente elétricos. Nos 50 anos desde a descoberta de que peixes elétricos fracos usam eletricidade para sentir seu entorno e se comunicar, uma crescente comunidade de cientistas ganhou enormes insights sobre a evolução do desenvolvimento, sistemas e circuitos de neurociência, fisiologia celular, ecologia, biologia evolutiva e comportamento. Mais recentemente, tem havido uma proliferação de recursos genômicos para peixes elétricos. O uso desses recursos já facilitou insights importantes no que diz respeito à conexão entre genótipo e fenótipo nessas espécies. Um grande obstáculo à integração de dados genômicos com dados phenotípicos de peixes elétricos fracos é a falta atual de ferramentas genômicas funcionais. Relatamos aqui um protocolo completo para a realização de mutagênese CRISPR/Cas9 que utiliza mecanismos de reparo de DNA endógenos em peixes fracamente elétricos. Demonstramos que este protocolo é igualmente eficaz tanto na espécie mormyrid Brienomyrus brachyistius e no gymnotiform Brachyhypopomus gauderio usando CRISPR/Cas9 para atingir indels e mutações pontuais na primeira exon do sódio canal gene scn4aa. Usando este protocolo, embriões de ambas as espécies foram obtidos e genotipados para confirmar que as mutações previstas no primeiro exon do canal de sódio scn4aa estavam presentes. O fenótipo de sucesso knock-out foi confirmado com gravações mostrando amplitudes reduzidas de descarga de órgãos elétricos quando comparadas a controles não injetados combinados com o tamanho.

A eletrorecepção e a eletrogênese mudaram na história evolutiva dos vertebrados. Duas linhagens de peixes teleost, osteoglossiformes e siluriformes, evoluíram o electroreception em paralelo, e cinco linhagens de teleosts (gymnotiformes, mormyrids, e os Astros generacopus, Malapterurus, e Synodontis) evoluiu a eletrogênese em paralelo. Há um grau impressionante de convergência nestes fenótipos derivados independentemente, que compartilham uma arquitetura genética comum1,2,3.

Isto é talvez melhor exemplificado pelas numeros....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Todos os métodos descritos aqui foram aprovados pelo Institutional Animal Care and Use Committee (IACUC) da Michigan State University.

1. Seleção de alvos sgRNA

Nota: Um protocolo é fornecido para o projeto manual de sgRNAs na etapa 1.1. Isso foi utilizado para a seleção de alvos scn4aa. Um protocolo adicional é fornecido para facilitar este processo (passo 1.2) usando o portal web EFISHGENOMICS. É aconselhável que os usuários selec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Os locais-alvo sgRNA foram identificados dentro do exon 1 de scn4aa em B. gauderio e B. brachyistius como descrito na Seção 1. Os sgRNAs foram gerados conforme descrito na Seção 2. Após a seleção e síntese bem sucedida sgRNA (Figura 1), clivagem in vitro foi testado(Figura 2). Os sgRNAs que demonstram o corte in vitro foram selecionados então para microinjections da única pilha.

Os peixes adultos f.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A riqueza phenotípica de peixes fracamente elétricos, juntamente com uma recente proliferação de recursos genômicos, motiva uma forte necessidade de ferramentas genômicas funcionais no modelo de peixe seleto fraco. Este sistema é particularmente atraente devido à evolução convergente de numerosas características phenotípicas em linhagens paralelas de peixes, que são facilmente mantidos em laboratório.

O protocolo aqui descrito demonstra a eficácia da técnica CRISPR/Cas9 em linh.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Os autores reconhecem os esforços heróicos de Monica Lucas, Katherine Shaw, Ryan Taylor, Jared Thompson, Nicole Robichaud e Hope Healey para ajudar com a criação de peixes, coleta de dados e desenvolvimento precoce do protocolo. Gostaríamos também de agradecer aos três revisores por suas sugestões ao manuscrito. Acreditamos que o produto final seja de melhor qualidade depois de abordar seus comentários. Este trabalho foi financiado pelo apoio da National Science Foundation #1644965 e #1455405 ao JRG, e da bolsa DG do Conselho de Pesquisa de Ciências Naturais e Engenharia para o VLS.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
20 mg/mL RNA grade GlycogenThermo ScientificR0551
50 bp DNA ladderNEBN3236L
borosilicate glass capillary with filamentSutter InstrumentBF100-58-10(O.D. 1.0mm, I.D. 0.58 mm, 10 cm length)
Cas9 protein with NLS; 1 mg/mLPNA BiologyCP01
Dneasy Blood & Tissue KitQiagen69506
Eppendorf FemptoJet 4i MicroinjectorFisher ScientificE5252000021
Eppendorf Microloader Pipette TipsFisher Scientific10289651
Hamilton syringeFisher Scientific14-824-654referred to as "precision glass syringe" in the protocol
KimwipeFisher Scientific06-666referred to as "delicate task wipe" in the protocol
MEGAscript T7 Transcription KitInvitrogenAM1334
NEBuffer 3NEBB7003Sused for in vitro cleavage assay
OneTaq DNA kitNEBM0480L
OvaprimSyndel USAhttps://www.syndel.com/ovaprim-ovammmlu010.htmlreferred to as "spawning agent" in the protocol
ParafilmFisher ScientificS37440referred to as "thermoplastic" in the protocol
Pipette pullerWPISU-P97sutter brand
QIAquick PCR Purification KitQiagen28106
Reusable needle- requires customizationFisher Scientific7803-02Customize to 0.7 inches long; point style 4 and angle 25
T4 DNA polymeraseNEBM0203LUse with the 10X NEB buffer that is included
Teflon coated toolsbonefolder.comT-SPATULA4PIECEreferred to as "polytetrafluoroethene" in the protocol

  1. Gallant, J. R., et al. Genomic basis for the convergent evolution of electric organs. Science. 344 (6191), 1522-1525 (2014).
  2. Zakon, H. H., Lu, Y., Zwickl, D. J., Hillis, D. M. Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America. 103 (10), 3675-3680 (2006).
  3. Arnegard, M. E., Zwickl, D. J., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system--twice. Proceedings of the National Academy of Sciences of the United States of America. 107, 22172-22177 (2010).
  4. Lissmann, H. W. Continuous electrical signals from the tail of a fish. Gymnarchus niloticus Cuv. Nature. 167 (4240), 201-202 (1951).
  5. Cuellar, H., Kim, J. A., Unguez, G. A. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB Journal. 20 (14), 2540 (2006).
  6. Modrell, M. S., Baker, C. V. Evolution of electrosensory ampullary organs: conservation of Eya4 expression during lateral line development in jawed vertebrates. Evolution & Development. 14 (3), 277-285 (2012).
  7. Hopkins, C. D. Design features for electric communication. Journal of Experimental Biology. 202, 1217-1228 (1999).
  8. Kawasaki, M. Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Current Opinion in Neurobiology. 7 (4), 473-479 (1997).
  9. Bell, C. C., Han, V. Z., Sugawara, Y., Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 (6630), 278-281 (1997).
  10. Heiligenberg, W. . Neural Nets in Electric Fish. , (1991).
  11. Ban, Y., Smith, B. E., Markham, M. R. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter. Journal of Neurophysiology. 114 (1), 520-530 (2015).
  12. Markham, M. R., Kaczmarek, L. K., Zakon, H. H. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. Journal of Neurophysiology. 109 (7), 1713-1723 (2013).
  13. Gavassa, S., Stoddard, P. K. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish. Hormones and Behavior. 62 (4), 381-388 (2012).
  14. Sinnett, P. M., Markham, M. R. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Hormones and Behavior. 71, 31-40 (2015).
  15. Salazar, V. L., Stoddard, P. K. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. Journal of Experimental Biology. 211, 1012-1020 (2008).
  16. Lewis, J. E., Gilmour, K. M., Moorhead, M. J., Perry, S. F., Markham, M. R. Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. Journal of Neuroscience. 34 (1), 197-201 (2014).
  17. Salazar, V. L., Krahe, R., Lewis, J. E. The energetics of electric organ discharge generation in gymnotiform weakly electric fish. Journal of Experimental Biology. 216 (13), 2459-2468 (2013).
  18. Hopkins, C. D., Bass, A. Temporal coding of species recognition signals in an electric fish. Science. 212 (4490), 85-87 (1981).
  19. Arnegard, M. E., Jackson, B. S., Hopkins, C. D. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. The Journal of Experimental Biology. 209, 2182-2198 (2006).
  20. Sullivan, J. P., Lavoue, S., Arnegard, M. E., Hopkins, C. D. AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution. 58 (4), 825-841 (2004).
  21. Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. Journal of Fish Biology. 53, 307-330 (1998).
  22. Pinch, M., Guth, R., Samanta, M. P., Chaidez, A., Unguez, G. A. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome. PeerJ. 4, 1828 (2016).
  23. Lamanna, F., Kirschbaum, F., Waurick, I., Dieterich, C., Tiedemann, R. Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics. 16, 668 (2015).
  24. Traeger, L. L., et al. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics. 16, 243 (2015).
  25. Salisbury, J. P., et al. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genomics. 16, 166 (2015).
  26. Lamanna, F., Kirschbaum, F., Tiedemann, R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Molecular Ecology Resources. 14 (6), 1222-1230 (2014).
  27. Mate, S. E., Brown, K. J., Hoffman, E. P. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skeletal Muscle. 1 (1), 20 (2011).
  28. Swapna, I., et al. Electrostatic Tuning of a Potassium Channel in Electric Fish. bioRxiv. , (2017).
  29. Futuyma, . Evolution. Third Edition. , (2013).
  30. Thompson, A., Vo, D., Comfort, C., Zakon, H. H. Expression Evolution Facilitated the Convergent Neofunctionalization of a Sodium Channel Gene. Molecular Biology and Evolution. 31 (8), 1941-1955 (2014).
  31. Pitchers, W. R., Constantinou, S. J., Losilla, M., Gallant, J. R. Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Physiology Paris. , (2016).
  32. Liang, X., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology. 208, 44-53 (2015).
  33. Jung, C. J., et al. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Research. 26 (2), 263-277 (2017).
  34. Liu, K., Petree, C., Requena, T., Varshney, P., Varshney, G. K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology. 7 (13), (2019).
  35. Zu, Y., et al. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Scientific Reports. 6, 23496 (2016).
  36. Crispo, M., et al. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One. 10 (8), 0136690 (2015).
  37. Sun, D., Guo, Z., Liu, Y., Zhang, Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology. 8, 608 (2017).
  38. Gagnon, J. A., et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One. 9 (5), 98186 (2014).
  39. Kok, F. O., et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell. 32 (1), 97-108 (2015).
  40. Morcos, P. A., Vincent, A. C., Moulton, J. D. Gene Editing Versus Morphants. Zebrafish. 12 (5), 319 (2015).
  41. Mehravar, M., Shirazi, A., Nazari, M., Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology. 445 (2), 156-162 (2019).
  42. Yen, S. T., et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Developmental Biology. 393 (1), 3-9 (2014).
  43. Singh, P., Schimenti, J. C., Bolcun-Filas, E. A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics. 199 (1), 1-15 (2015).
  44. Mianné, J., et al. Analyzing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods. 121-122, 68-76 (2017).
  45. van der Emde, G., Breed, M. D., Moore, J. . Encyclopedia of Animal Behavior. 1, 16-23 (2010).
  46. Carlson, B. A., Binder, M. D., Hirokawa, N., Windhorst, U., Hirsch, M. C. . Encyclopedia of Neuroscience. , 4039-4044 (2009).
  47. Hopkins, C. D. Neruoethology of Electric Communication. Annual Reviews of Neuroscience. 11, 497-535 (1988).
  48. Arnegard, M., Zwickl, D., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system- twice. Proceedings of the National Academy of Sciences of the United States of America. 107 (51), 22172-22177 (2010).
  49. Doench, J. G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology. 32 (12), 1262-1267 (2014).
  50. Concordet, J. P., Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Resarch. 46, 242-245 (2018).
  51. Haeussler, M., et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology. 17 (1), 148 (2016).
  52. Kirschbaum, F. Environmental factors control the periodical reproduction of tropical electric fish. Experientia. 31 (10), 1159-1160 (1975).
  53. Iwama, G. K., McGeer, J. C., Pawluk, M. P. The effects of five fish anaesthetics on acid-base balance, hematocrit, cortisol and adrenaline in rainbow trout. Canadian Journal of Zoology. 67, 2065-2073 (1989).
  54. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. , (2000).
  55. Barrangou, R., Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nature Biotechnology. 34 (9), 933-941 (2016).
  56. Adli, M. The CRISPR tool kit for genome editing and beyond. Nature Communications. 9 (1), 1911 (2018).
  57. Maruyama, T., et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology. 33 (5), 538-542 (2015).
  58. Liu, M., et al. Methodologies for Improving HDR Efficiency. Frontiers in Genetics. 9, 691 (2018).
  59. Kirschbaum, F., et al. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. Journal of Physiology Paris. 110, 281-301 (2016).
  60. Jao, L. E., Wente, S. R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Science of the United States of America. 110 (34), 13904-13909 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved