JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Молчание Spark: CRISPR/Cas9 Редактирование генома в слабо электрической рыбы

Published: October 27th, 2019

DOI:

10.3791/60253

1Department of Integrative Biology, Michigan State University, 2Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Humboldt University, 3Department of Biology, Cape Breton University

Здесь представлен протокол для производства и заднего CRISPR/Cas9 генома нокаут электрической рыбы. Изложены в деталях являются необходимые молекулярной биологии, селекции, и животноводство требования как для gymnotiform и mormyrid, и инъекционные методы для производства Cas9 индуцированных indel F0 личинок.

Электроприем и электрогенез изменились в эволюционной истории позвоночных. Существует поразительная степень конвергенции в этих независимо полученных фенотипов, которые имеют общую генетическую архитектуру. Это, пожалуй, лучше всего иллюстрируется многочисленными конвергентными особенностями гимнотиформ и мормиридов, двух богатых видов телеостовых кладок, которые производят и обнаруживают слабые электрические поля и называются слабо электрическими рыбами. За 50 лет, прошедших с момента открытия, что слабо электрические рыбы используют электричество, чтобы почувствовать свое окружение и общаться, растущее сообщество ученых получило огромное понимание эволюции развития, систем и схем нейронауки, клеточной физиологии, экологии, эволюционной биологии и поведения. В последнее время наблюдается распространение геномных ресурсов для электрической рыбы. Использование этих ресурсов уже способствовало получению важных сведений о связи между генотипом и фенотипом этих видов. Основным препятствием для интеграции данных геномики с фенотипическими данными слабоэлектрической рыбы является отсутствие функциональных инструментов геномики. Мы сообщаем здесь полный протокол для выполнения CRISPR/Cas9 мутагенеза, который использует эндогенные механизмы репарации ДНК в слабо электрических рыб. Мы демонстрируем, что этот протокол одинаково эффективен как в мормиридных видах Brienomyrus brachyistius, так и в gymnotiform Brachyhypopomus gauderio с помощью CRISPR/Cas9 для целевой indels и точечных мутаций в первом экзоне натриевый канал гена scn4aa. Используя этот протокол, эмбрионы обоих видов были получены и генотипированы, чтобы подтвердить, что прогнозируемые мутации в первом экзоне канала натрия scn4aa присутствовали. Плей-аут успеха фенотип был подтвержден с записями, показывающими снижение электрических амплитуды разряда органов по сравнению с невведенным размером соответствующих элементов управления.

Электроприем и электрогенез изменились в эволюционной истории позвоночных. Две линии телеостных рыб, остеоглоссиформы и силуриформы, развивались электроприем параллельно, и пять линий телеост (гимназии, мормириды, и род Астроскопус, Малаптерурус, и Synodontis) развивался электрогенез параллельно. Существует поразительная степень конвергенции в этих независимо полученных фенотипов, которые имеют общую генетическую архитектуру1,2,3.

Это, пожалуй, лучше всего иллюстрируется многочисленными конвергентными особенностями гимнот....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Все методы, описанные здесь, были одобрены Институциональным комитетом по уходу за животными и использованию (IACUC) Мичиганского государственного университета.

1. Выбор целей sgRNA

ПРИМЕЧАНИЕ: Предусмотрен протокол ручного проектирования сгРНВ в шаге.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Целевые объекты сгРНК были определены в пределах exon 1 scn4aa в обоих B. gauderio и B. brachyistius, как описано в разделе 1. СГРН были созданы, как описано в разделе 2. После успешного отбора и синтеза сгРНК(Рисунок 1),декольте в пробирке было протестировано(рисуно.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Фенотипическое богатство слабоэлектрической рыбы, наряду с недавним распространением ресурсов геномики, мотивирует острую потребность в функциональных геномных инструментах в слабо электрической модели рыб. Эта система особенно привлекательна из-за конвергентной эволюции многочи?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Авторы признают героические усилия Моники Лукас, Кэтрин Шоу, Райана Тейлора, Джареда Томпсона, Николь Робишо и Хоуп Хили за помощь в размножеству рыб, сборе данных и разработке раннего протокола. Мы также хотели бы поблагодарить трех рецензентов за их предложения по рукописи. Мы считаем, что конечный продукт будет лучшего качества после рассмотрения их замечаний. Эта работа была профинансирована за счет поддержки Со стороны Национального научного фонда #1644965 и #1455405 JRG, а также Грант Совета по естественным наукам и инженерным исследованиям DG для VLS.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
20 mg/mL RNA grade GlycogenThermo ScientificR0551
50 bp DNA ladderNEBN3236L
borosilicate glass capillary with filamentSutter InstrumentBF100-58-10(O.D. 1.0mm, I.D. 0.58 mm, 10 cm length)
Cas9 protein with NLS; 1 mg/mLPNA BiologyCP01
Dneasy Blood & Tissue KitQiagen69506
Eppendorf FemptoJet 4i MicroinjectorFisher ScientificE5252000021
Eppendorf Microloader Pipette TipsFisher Scientific10289651
Hamilton syringeFisher Scientific14-824-654referred to as "precision glass syringe" in the protocol
KimwipeFisher Scientific06-666referred to as "delicate task wipe" in the protocol
MEGAscript T7 Transcription KitInvitrogenAM1334
NEBuffer 3NEBB7003Sused for in vitro cleavage assay
OneTaq DNA kitNEBM0480L
OvaprimSyndel USAhttps://www.syndel.com/ovaprim-ovammmlu010.htmlreferred to as "spawning agent" in the protocol
ParafilmFisher ScientificS37440referred to as "thermoplastic" in the protocol
Pipette pullerWPISU-P97sutter brand
QIAquick PCR Purification KitQiagen28106
Reusable needle- requires customizationFisher Scientific7803-02Customize to 0.7 inches long; point style 4 and angle 25
T4 DNA polymeraseNEBM0203LUse with the 10X NEB buffer that is included
Teflon coated toolsbonefolder.comT-SPATULA4PIECEreferred to as "polytetrafluoroethene" in the protocol

  1. Gallant, J. R., et al. Genomic basis for the convergent evolution of electric organs. Science. 344 (6191), 1522-1525 (2014).
  2. Zakon, H. H., Lu, Y., Zwickl, D. J., Hillis, D. M. Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America. 103 (10), 3675-3680 (2006).
  3. Arnegard, M. E., Zwickl, D. J., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system--twice. Proceedings of the National Academy of Sciences of the United States of America. 107, 22172-22177 (2010).
  4. Lissmann, H. W. Continuous electrical signals from the tail of a fish. Gymnarchus niloticus Cuv. Nature. 167 (4240), 201-202 (1951).
  5. Cuellar, H., Kim, J. A., Unguez, G. A. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB Journal. 20 (14), 2540 (2006).
  6. Modrell, M. S., Baker, C. V. Evolution of electrosensory ampullary organs: conservation of Eya4 expression during lateral line development in jawed vertebrates. Evolution & Development. 14 (3), 277-285 (2012).
  7. Hopkins, C. D. Design features for electric communication. Journal of Experimental Biology. 202, 1217-1228 (1999).
  8. Kawasaki, M. Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Current Opinion in Neurobiology. 7 (4), 473-479 (1997).
  9. Bell, C. C., Han, V. Z., Sugawara, Y., Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 (6630), 278-281 (1997).
  10. Heiligenberg, W. . Neural Nets in Electric Fish. , (1991).
  11. Ban, Y., Smith, B. E., Markham, M. R. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter. Journal of Neurophysiology. 114 (1), 520-530 (2015).
  12. Markham, M. R., Kaczmarek, L. K., Zakon, H. H. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. Journal of Neurophysiology. 109 (7), 1713-1723 (2013).
  13. Gavassa, S., Stoddard, P. K. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish. Hormones and Behavior. 62 (4), 381-388 (2012).
  14. Sinnett, P. M., Markham, M. R. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Hormones and Behavior. 71, 31-40 (2015).
  15. Salazar, V. L., Stoddard, P. K. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. Journal of Experimental Biology. 211, 1012-1020 (2008).
  16. Lewis, J. E., Gilmour, K. M., Moorhead, M. J., Perry, S. F., Markham, M. R. Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. Journal of Neuroscience. 34 (1), 197-201 (2014).
  17. Salazar, V. L., Krahe, R., Lewis, J. E. The energetics of electric organ discharge generation in gymnotiform weakly electric fish. Journal of Experimental Biology. 216 (13), 2459-2468 (2013).
  18. Hopkins, C. D., Bass, A. Temporal coding of species recognition signals in an electric fish. Science. 212 (4490), 85-87 (1981).
  19. Arnegard, M. E., Jackson, B. S., Hopkins, C. D. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. The Journal of Experimental Biology. 209, 2182-2198 (2006).
  20. Sullivan, J. P., Lavoue, S., Arnegard, M. E., Hopkins, C. D. AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution. 58 (4), 825-841 (2004).
  21. Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. Journal of Fish Biology. 53, 307-330 (1998).
  22. Pinch, M., Guth, R., Samanta, M. P., Chaidez, A., Unguez, G. A. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome. PeerJ. 4, 1828 (2016).
  23. Lamanna, F., Kirschbaum, F., Waurick, I., Dieterich, C., Tiedemann, R. Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics. 16, 668 (2015).
  24. Traeger, L. L., et al. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics. 16, 243 (2015).
  25. Salisbury, J. P., et al. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genomics. 16, 166 (2015).
  26. Lamanna, F., Kirschbaum, F., Tiedemann, R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Molecular Ecology Resources. 14 (6), 1222-1230 (2014).
  27. Mate, S. E., Brown, K. J., Hoffman, E. P. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skeletal Muscle. 1 (1), 20 (2011).
  28. Swapna, I., et al. Electrostatic Tuning of a Potassium Channel in Electric Fish. bioRxiv. , (2017).
  29. Futuyma, . Evolution. Third Edition. , (2013).
  30. Thompson, A., Vo, D., Comfort, C., Zakon, H. H. Expression Evolution Facilitated the Convergent Neofunctionalization of a Sodium Channel Gene. Molecular Biology and Evolution. 31 (8), 1941-1955 (2014).
  31. Pitchers, W. R., Constantinou, S. J., Losilla, M., Gallant, J. R. Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Physiology Paris. , (2016).
  32. Liang, X., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology. 208, 44-53 (2015).
  33. Jung, C. J., et al. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Research. 26 (2), 263-277 (2017).
  34. Liu, K., Petree, C., Requena, T., Varshney, P., Varshney, G. K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology. 7 (13), (2019).
  35. Zu, Y., et al. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Scientific Reports. 6, 23496 (2016).
  36. Crispo, M., et al. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One. 10 (8), 0136690 (2015).
  37. Sun, D., Guo, Z., Liu, Y., Zhang, Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology. 8, 608 (2017).
  38. Gagnon, J. A., et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One. 9 (5), 98186 (2014).
  39. Kok, F. O., et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell. 32 (1), 97-108 (2015).
  40. Morcos, P. A., Vincent, A. C., Moulton, J. D. Gene Editing Versus Morphants. Zebrafish. 12 (5), 319 (2015).
  41. Mehravar, M., Shirazi, A., Nazari, M., Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology. 445 (2), 156-162 (2019).
  42. Yen, S. T., et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Developmental Biology. 393 (1), 3-9 (2014).
  43. Singh, P., Schimenti, J. C., Bolcun-Filas, E. A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics. 199 (1), 1-15 (2015).
  44. Mianné, J., et al. Analyzing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods. 121-122, 68-76 (2017).
  45. van der Emde, G., Breed, M. D., Moore, J. . Encyclopedia of Animal Behavior. 1, 16-23 (2010).
  46. Carlson, B. A., Binder, M. D., Hirokawa, N., Windhorst, U., Hirsch, M. C. . Encyclopedia of Neuroscience. , 4039-4044 (2009).
  47. Hopkins, C. D. Neruoethology of Electric Communication. Annual Reviews of Neuroscience. 11, 497-535 (1988).
  48. Arnegard, M., Zwickl, D., Lu, Y., Zakon, H. H. Old gene duplication facilitates origin and diversification of an innovative communication system- twice. Proceedings of the National Academy of Sciences of the United States of America. 107 (51), 22172-22177 (2010).
  49. Doench, J. G., et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology. 32 (12), 1262-1267 (2014).
  50. Concordet, J. P., Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Resarch. 46, 242-245 (2018).
  51. Haeussler, M., et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology. 17 (1), 148 (2016).
  52. Kirschbaum, F. Environmental factors control the periodical reproduction of tropical electric fish. Experientia. 31 (10), 1159-1160 (1975).
  53. Iwama, G. K., McGeer, J. C., Pawluk, M. P. The effects of five fish anaesthetics on acid-base balance, hematocrit, cortisol and adrenaline in rainbow trout. Canadian Journal of Zoology. 67, 2065-2073 (1989).
  54. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. , (2000).
  55. Barrangou, R., Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nature Biotechnology. 34 (9), 933-941 (2016).
  56. Adli, M. The CRISPR tool kit for genome editing and beyond. Nature Communications. 9 (1), 1911 (2018).
  57. Maruyama, T., et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology. 33 (5), 538-542 (2015).
  58. Liu, M., et al. Methodologies for Improving HDR Efficiency. Frontiers in Genetics. 9, 691 (2018).
  59. Kirschbaum, F., et al. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. Journal of Physiology Paris. 110, 281-301 (2016).
  60. Jao, L. E., Wente, S. R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Science of the United States of America. 110 (34), 13904-13909 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved