Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Neuroendocrine tumors (NETs) originate from neuroendocrine cells of the neural crest. They are slow growing and challenging to culture. We present an alternative strategy to grow NETs from the small bowel by culturing them as spheroids. These spheroids have small bowel NET markers and can be used for drug testing.

Abstract

Small bowel neuroendocrine tumors (SBNETs) are rare cancers originating from enterochromaffin cells of the gut. Research in this field has been limited because very few patient derived SBNET cell lines have been generated. Well-differentiated SBNET cells are slow growing and are hard to propagate. The few cell lines that have been established are not readily available, and after time in culture may not continue to express characteristics of NET cells. Generating new cell lines could take many years since SBNET cells have a long doubling time and many enrichment steps are needed in order to eliminate the rapidly dividing cancer-associated fibroblasts. To overcome these limitations, we have developed a protocol to culture SBNET cells from surgically removed tumors as spheroids in extracellular matrix (ECM). The ECM forms a 3-dimensional matrix that encapsulates SBNET cells and mimics the tumor micro-environment for allowing SBNET cells to grow. Here, we characterized the growth rate of SBNET spheroids and described methods to identify SBNET markers using immunofluorescence microscopy and immunohistochemistry to confirm that the spheroids are neuroendocrine tumor cells. In addition, we used SBNET spheroids for testing the cytotoxicity of rapamycin.

Introduction

Small bowel neuroendocrine tumors (SBNETs) originate from enterochromaffin cells of the small intestine. Although SBNETs are generally known to grow slowly, they commonly metastasize to the liver1. While the surgical removal or tumor ablation can be considered in many cases, recurrence is nearly universal, and, therefore, medical therapy plays an important role in management. Tremendous efforts have been invested to generate new SBNET cell lines for drug testing. However, there has been very little success. Only 6 SBNET cell lines (KRJ-I, CND2, GOT1, P-STS, L-STS, H-STS) have been reported2,3....

Protocol

All experiments using human neuroendocrine tumor samples have been approved by the University of Iowa Hospital and Clinics IRB committee (Protocol number 199911057). A list of all materials and equipment is described in the Table of Materials. A list of growth media and key solutions is found in Table 1.

1. Small bowel neuroendocrine tumor (SBNET) collection and cell dissociation

  1. Obtain resected patient SBNET samples after tumor tissues confirmatio.......

Representative Results

There are currently only 2 SBNET cell lines established and published2,3,4,5 and they are not readily available to many researchers. Here, we propose to culture SBNET as spheroids in ECM and use this as an alternative model to study SBNET drug sensitivity. Patient-derived tumor from an SBNET that metastasized to the liver was collected, digested to release SBNET cells, and mixed with liquid ECM.......

Discussion

Tumor 3D cultures have become a valuable resource for preclinical drug testing15. Various tumor organoid biobanks have recently been established from breast cancer and prostate cancer tumors16,17. In this study, we provide a detailed protocol to culture SBNET as spheroids and a simple and fast method to validate the spheroid cultures for NET markers by immunofluorescence and test drug sensitivity. From our experience, SBNET spheroids can g.......

Acknowledgements

This work was supported by NIH grants P50 CA174521 (to J.R. Howe and A.M. Bellizzi). P.H. Ear is a recipient of the P50 CA174521 Career Enhancement Program award.

....

Materials

NameCompanyCatalog NumberComments
Anti-rabbit FITCJackson ImmunoResearch11-095-152Secondary antibody couple to a green fluorophore
Antigen Retrieval SolutionAgilent DakoS2367Solution at pH 9 for preparing slides for IHC
Autostainer Link 48Agilent DakoNot AvailableAutomated system for antibody staining
Cell freezing containerThermo Scientific5100-0001Container to for freezing cells
CellSenceOlympusVersion 1.18Computer software for using fluorescent microscope
Chromogranin A antibodyAbcam-45179RB-9003-POAntibodies for IF
Chromogranin A antibody (clone LK2H10)Thermo ScientificMA5-13096Antibodies for IHC
CollagenaseSigmaC0130Enzyme for digesting tumor tissue
DMEMGibco11965-092Medium for tissue preparation
DMEM/F12Gibco11320-033Medium for organoid cultures
DMSOSigmaD8418Solvent for dissolving drug
DNAseSigmaDN25Enzyme for digesting tumor tissue
Ethidium HomodimerChemodexCDX-E0012-T1EDNA and RNA binding dye
FBSGibco16000044Reagent for culture media
Fluorescent microscopeOlympusCKX35Microscope for taking pictures of SBENT spheroids
GlutamineGibcoA2916801Reagent for culture media
ImageJNational Institutes of HealthVersion 1.51Computer software for image analysis
InsulinSigmaI0516Reagent for culture media
MatrigelCorning356235Matrix to embed and anchore organoids
Mounting medium (VECTASHIELD)Vector LaboratoriesH-1200Fixative for labelled-cells with a nuclear stain
NicotinamideSigma72340Reagent for culture media
ParaformaldehydeElectron Microscopy Sciences15710Reagent to fix cells
PEN/STREPGibco15140-122Reagent for culture media
PT LinkAgilent DakoNot AvailableAutomated system to prepare slides for IHC staining
RapamycinAlfa AesarJ62473Drug that can inhibit NET growth
Secondary antibodies for IHCAgilent DakoK8000Secondary antibodies for IHC using Polymer-based EnVision FLEX system
SSTR2 antibodyGeneScritpA01591Antibodies for IF
SSTR2 antibody (clone UMB1)Abcamab134152Antibodies for IHC
Synaptophysin antibodyAbcam32127Antibodies for IF
Synaptophysin antibody (clone DAK-SYNAP)Agilent DakoM7315Antibodies for IHC
TritonXMallinckrodt3555 KBGEReagent to permeablize cells
Y-2763 ROCK inhibitorAdipogenAG-CR1-3564-M005To improve SBNET spheroid viability after freeze thaw

References

  1. Maxwell, J. E., Sherman, S. K., Howe, J. R. Translational Diagnostics and Therapeutics in Pancreatic Neuroendocrine Tumors. Clinical Cancer Research. 22, 5022-5029 (2016).
  2. Pfragner, R., et al.

Explore More Articles

Small Bowel Neuroendocrine TumorSBNET3D CultureSpheroidsCell LineNeuroendocrine TumorCell IsolationCell DigestionCell CountingExtracellular Matrix

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved