JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

建立干细胞治疗心肌梗塞心力衰竭的猪模型

Published: May 25th, 2020

DOI:

10.3791/60392

1Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, 2Shenzhen Institutes of Research and Innovation, University of Hong Kong
* These authors contributed equally

我们寻求建立一个猪模型的心力衰竭引起的左环弹性动脉阻塞和快速起搏,以测试心肌内给给干细胞的效果和安全性的细胞为基础的疗法。

虽然在心肌梗塞(MI)后心力衰竭的治疗方面已取得进步,但MI后HF仍然是全世界死亡和发病的主要原因之一。MI后心脏修复和改善左心室功能的细胞疗法引起了相当大的关注。因此,这些细胞移植的安全性和有效性应在临床使用前在HF的临床前大型动物模型中进行测试。猪由于在心脏大小和冠状动脉解剖学方面与人类相似,被广泛用于心血管疾病研究。因此,我们寻求提出一个有效的方案,建立一个猪慢性HF模型使用封闭胸冠状动脉闭塞的左环弹性动脉(LCX),其次是快速心室起搏诱导与心脏起搏器植入。八周后,干细胞通过心肌注射在近腹区施用。然后评估梗塞大小、细胞存活率和左心室功能(包括心电图、血流动力学参数和电生理学)。本研究有助于建立一个稳定的临床前大型动物HF模型的干细胞治疗。

心血管疾病,特别是冠状动脉疾病,仍然是香港及全球1月1日发病和死亡的主要原因。在香港,由2012至2017年,在医院管理局接受治疗的CAD病人人数预计增加26%。在所有病症中,急性心肌梗塞 (MI) 是导致死亡和随后的并发症(如心力衰竭 (HF))的主要原因。这些都带来了巨大的医疗、社会和财政负担。在 MI 患者中,血栓整流治疗或初级皮下冠状动脉干预 (PCI) 是保护生命的有效疗法,但这些疗法只能减少 MI 期间心肌细胞 (CM) 损失。可用的治疗方法无法补充CMs的永久性损失,导致心脏纤维化、心肌重塑、心律失常,并最终心力衰竭。MI后1年的死亡率约为7%,超过20%的患者患有HF3。在末期HF患者中,心脏移植是唯一可用的有效疗法,但受可用器官短缺的有限。新颖的疗法是扭转后MIHF的发展所必需的。因此,基于细胞的治疗被认为是一种有吸引力的方法,以修复受损的CMs和改善左心室(LV)功能在HF后MI。我们先前的研究发现,在MI4、5,的小动物模型中直接进行心肌移植后,干细胞移植对心脏功能的改善是有益的。因此,需要标准化的临床前大型动物HF方案,以进一步测试干细胞移植在临床使用前的有效性和安全性。

近几十年来,猪在心血管....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有动物实验都按照美国国家卫生研究院和香港大学法规所公布的《实验室动物护理和使用指南》进行,该议定书已获香港大学活动物教学及研究使用委员会(CULTAR)批准。

注:本研究使用体重35-40公斤(9-12个月大)的雌性农场猪。此实验的流程图如图 1 所示

1. 外科手术

  1. 动物的麻醉和准备
    1. 禁食动物12小时,在实验?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

死亡率
这项研究共使用了24头猪。其中三人在 MI 诱导期间因持续 Vt 死亡。一只动物因伤口出血在开胃手术中因细胞注射而死亡。两只动物因严重感染死亡。由于 EF 的轻微减少(LVEF 减少 > 基线的 40%),两种动物被排除在外。结果,16只动物完成了整个研究方案。

心脏功能和重塑
串行超声心动图?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

标准动物模型对于了解疾病的病理生理学和机制以及测试新的治疗方法至关重要。我们的协议建立了由左环状动脉阻塞和快速起搏诱导的HF猪模型。在MI诱导八周后,这些动物对LVEF、LVEDD、LVESD、+dP/dt和ESPVR有显著损伤。该协议还测试了干细胞治疗的真菌方法,通过心内注射促进心脏再生。评估梗塞大小以及心脏收缩和舒张功能。本研究有助于建立一个稳定且可重复的临床前大型动物HF模型,用于干.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

作者感谢阿尔弗雷达和孔德忠在动物实验中的出色技术支持。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
AmiodaroneMylan--
Anaesthetic machines and respiratorDragerFabius plus XL-
AngiocathBecton Dickinson381147-
Anti-human nuclear antigenabcamab19118-
Axio Plus image capturing systemZeissAxioskop 2 PLUSAxioskop 2 plus
AxioVision Rel. 4.5 softwareZeiss--
BaytrilBayer-enrofloxacin
BetadineMundipharma--
CardioLab Electrophysiology Recording SystemsGE HealthcareG220f-
Culture mediaMesenCult05420-
CyclosporineNovartis--
DefibrillatorGE HealthcareCardioServ-
DorminalTEVA--
Echocardiographic systemGE VingmedVivid i-
EchoPac softwareGE Vingmed--
Electrophysiological catheterCordis Corp--
Embozene MicrosphereBoston Scientific17020-S1700 μm
Endotracheal tubeVet CareVCPET70PCWSize 7
EthanolVWR chemicals20821.33-
FormalinSigmaHT50132010%
IVC balloon Dilatation CatheterBoston Scientific3917112041Mustang
JR4 guiding catheterCordis Corp672082006F
LidocaineQuala--
MersilkEthiconW5842-0
Metoprolol succinateWockhardt--
MicrotomeLeicaRM2125RT-
Mobile C arm fluoroscopy equipmentGE HealthcareOEC 9900 Elite-
PacemakerSt Jude MedicalPM1272Assurity MRI pacemaker
Pacemaker generatorSt Jude MedicalMerlln model 3330-
Pressure-volume catheterCD LeycomCA-71103-PL7F
Pressure–volume signal processorCD LeycomSIGMA-M-
Programmable StimulatorMedtronic Inc5328-
PTCA Dilatation balloon CatheterBoston ScientificH7493919120250MAVERICK over the wire
RamiprilTEVA--
Sheath introducerCordis Corp504608X8F, 9F, 12F
SteroidVersus Arthritis--
TemgesicNindivior-buprenorphine
Venous indwelling needleTERUMOSR+OX2225C22G
VicrylEthiconVCP320H2-0
XylazineAlfasan International B.V.--
ZoletilVirbac New Zealand Limited-tiletamine+zolezepam

  1. Mozaffarian, D., et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 131, e29 (2015).
  2. Hospital Authority. . Hospital Authority Statistical Report 2013. , (2013).
  3. Cung, T. T., et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. The New England Journal of Medicine. 373 (11), 1021-1031 (2015).
  4. Liao, S. Y., et al. Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm. 7, 1852-1859 (2010).
  5. Liao, S. Y., et al. Overexpression of Kir2.1 channel in embryonic stem cell-derived cardiomyocytes attenuates posttransplantation proarrhythmic risk in myocardial infarction. Heart Rhythm. 10, 273-282 (2013).
  6. Liu, Y., et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. Journal of Cardiovascular Electrophysiology. 23, 534-540 (2012).
  7. Liao, S. Y., et al. Improvement of Myocardial Function Following Catheter-Based Renal Denervation in Heart Failure. JACC: Basic to Translational Science. 2 (3), 270-281 (2017).
  8. Liao, S. Y., et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure. Europace. 17 (12), 1875-1883 (2015).
  9. Daehnert, I., Rotzsch, C., Wiener, M., Schneider, P. Rapid right ventricular pacing is an alternative to adenosine in catheter interventional procedures for congenital heart disease. Heart. 90 (9), 1047-1050 (2004).
  10. Hála, P., et al. Tachycardia-Induced Cardiomyopathy as a Chronic Heart Failure Model in Swine. Journal of Visualized Experiments. (132), e57030 (2018).
  11. Santoso, T., et al. Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). Journal of Cardiovascular Translational Research. 7, 545-552 (2014).
  12. Traverse, J. H., et al. Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. Journal of the American Medical Association. 306, 2110-2119 (2011).
  13. Traverse, J. H., et al. Cardiovascular Cell Therapy Research Network (CCTRN). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Journal of the American Medical Association. 308, 2380-2389 (2012).
  14. de Jong, R., Houtgraaf, J. H., Samiei, S., Boersma, E., Duckers, H. J. Intracoronary stem cell infusion after myocardial infarction. A meta-analysis and update on clinical trials. Circulation: Cardiovascular Interventions. 7, 156-167 (2014).
  15. Nowbar, A. N., et al. DAMASCENE writing group. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. British Medical Journal. 348, g2688 (2014).
  16. Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., Hare, J. M. Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials. Circulation Research. 120 (7), 1139-1150 (2017).
  17. Hou, D., et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 112 (9 Suppl), I150-I156 (2005).
  18. Hu, X., et al. A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates: Paracrine Activity Without Remuscularization. Circulation Research. 118, 970-983 (2016).
  19. Chong, J. J., et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 510, 273-277 (2014).
  20. Martens, A., et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction. Artificial Organs. 38, 978-984 (2014).
  21. Shiba, Y., et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 538, 388-391 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved