JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Estabelecendo um modelo suíno de insuficiência cardíaca pós-miocárdio para tratamento de células-tronco

Published: May 25th, 2020

DOI:

10.3791/60392

1Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, 2Shenzhen Institutes of Research and Innovation, University of Hong Kong
* These authors contributed equally

Buscamos estabelecer um modelo suíno de insuficiência cardíaca induzido pelo bloqueio da artéria circunflexo esquerda e ritmo rápido para testar o efeito e a segurança da administração intramiocárdia de células-tronco para terapias baseadas em células.

Embora tenham sido alcançados avanços no tratamento da insuficiência cardíaca (HF) após o infarto do miocárdio (MI), o HF após o MI continua sendo uma das principais causas de mortalidade e morbidade em todo o mundo. As terapias baseadas em células para reparação cardíaca e melhoria da função ventricular esquerda após o MI têm atraído considerável atenção. Assim, a segurança e a eficácia desses transplantes celulares devem ser testadas em um modelo animal de grande porte pré-clínico de HF antes do uso clínico. Os suínos são amplamente utilizados para pesquisas de doenças cardiovasculares devido à sua semelhança com os humanos em termos de tamanho cardíaco e anatomia coronária. Por isso, buscamos apresentar um protocolo eficaz para o estabelecimento de um modelo de HF crônico porcino utilizando oclusão de balão coronário de peito fechado da artéria circunflexo esquerda (LCX), seguido de ritmo ventricular rápido induzido à implantação do marca-passo. Oito semanas depois, as células-tronco foram administradas por injeção intramocárida na área peri-infarto. Em seguida, foram avaliados o tamanho do infarto, a sobrevivência celular e a função ventricular esquerda (incluindo ecocardiografia, parâmetros hemodinâmicos e eletrofisiologia). Este estudo ajuda a estabelecer um modelo de HF animal de grande porte pré-clínico estável para o tratamento de células-tronco.

As doenças cardiovasculares, a doença arterial coronariana (CAD), em particular, continuam sendo a principal causa de morbidade e mortalidade em Hong Kong e em todo o mundo1. Em Hong Kong, foi projetado um aumento de 26% de 2012 para 2017 do número de pacientes do CAD tratados sob a Autoridade Hospitalar. Entre todos os CADs, o infarto agudo do miocárdio (MI) é uma das principais causas de morte e complicações subsequentes, como insuficiência cardíaca (HF). Estes contribuem para cargas médicas, sociais e financeiras significativas. Em pacientes com MI, a terapia trombolítica ou intervenção coronária percutânea primária (....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Todos os experimentos em animais foram realizados de acordo com o Guia para o Cuidado e Uso de Animais de Laboratório publicado pelos Institutos Nacionais de Saúde dos EUA e regulamentos da Universidade de Hong Kong, e o protocolo foi aprovado pelo Comitê sobre o Uso de Animais Vivos no Ensino e Pesquisa (CULTAR) da Universidade de Hong Kong.

NOTA: Foram utilizados neste estudo suínos de fazenda fêmeas que pesam 35-40 kg (9-12 meses de idade). O fluxograma deste experimento é mostrado na.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Mortalidade
Neste estudo, foram utilizados 24 suínos. Três deles morreram durante a indução de MI por causa de VT sustentado. Um animal morreu na cirurgia de coração aberto para injeção celular por causa de sangramento na ferida. Dois animais morreram por infecção grave. Dois animais foram excluídos por causa da ligeira redução do EF (redução de LVEF > 40% da linha de base). Como resultado, 16 animais completaram todo o protocolo de estudo.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Modelos animais padrão são de suma importância para entender a fisiopatologia e mecanismos de doenças e testar novas terapêuticas. Nosso protocolo estabelece um modelo suíno de HF induzido pelo bloqueio da artéria circunflexo esquerda e ritmo rápido. Oito semanas após a indução de MI, os animais desenvolveram prejuízo significativo de LVEF, LVEDD, LVESD, +dP/dt e ESPVR. Este protocolo também testa o método de administração da terapia de células-tronco para regeneração cardíaca por injeção intramocá.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Os autores reconhecem Alfreda e Kung Tak Chung por seu excelente apoio técnico durante os experimentos em animais.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
AmiodaroneMylan--
Anaesthetic machines and respiratorDragerFabius plus XL-
AngiocathBecton Dickinson381147-
Anti-human nuclear antigenabcamab19118-
Axio Plus image capturing systemZeissAxioskop 2 PLUSAxioskop 2 plus
AxioVision Rel. 4.5 softwareZeiss--
BaytrilBayer-enrofloxacin
BetadineMundipharma--
CardioLab Electrophysiology Recording SystemsGE HealthcareG220f-
Culture mediaMesenCult05420-
CyclosporineNovartis--
DefibrillatorGE HealthcareCardioServ-
DorminalTEVA--
Echocardiographic systemGE VingmedVivid i-
EchoPac softwareGE Vingmed--
Electrophysiological catheterCordis Corp--
Embozene MicrosphereBoston Scientific17020-S1700 μm
Endotracheal tubeVet CareVCPET70PCWSize 7
EthanolVWR chemicals20821.33-
FormalinSigmaHT50132010%
IVC balloon Dilatation CatheterBoston Scientific3917112041Mustang
JR4 guiding catheterCordis Corp672082006F
LidocaineQuala--
MersilkEthiconW5842-0
Metoprolol succinateWockhardt--
MicrotomeLeicaRM2125RT-
Mobile C arm fluoroscopy equipmentGE HealthcareOEC 9900 Elite-
PacemakerSt Jude MedicalPM1272Assurity MRI pacemaker
Pacemaker generatorSt Jude MedicalMerlln model 3330-
Pressure-volume catheterCD LeycomCA-71103-PL7F
Pressure–volume signal processorCD LeycomSIGMA-M-
Programmable StimulatorMedtronic Inc5328-
PTCA Dilatation balloon CatheterBoston ScientificH7493919120250MAVERICK over the wire
RamiprilTEVA--
Sheath introducerCordis Corp504608X8F, 9F, 12F
SteroidVersus Arthritis--
TemgesicNindivior-buprenorphine
Venous indwelling needleTERUMOSR+OX2225C22G
VicrylEthiconVCP320H2-0
XylazineAlfasan International B.V.--
ZoletilVirbac New Zealand Limited-tiletamine+zolezepam

  1. Mozaffarian, D., et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 131, e29 (2015).
  2. Hospital Authority. . Hospital Authority Statistical Report 2013. , (2013).
  3. Cung, T. T., et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. The New England Journal of Medicine. 373 (11), 1021-1031 (2015).
  4. Liao, S. Y., et al. Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm. 7, 1852-1859 (2010).
  5. Liao, S. Y., et al. Overexpression of Kir2.1 channel in embryonic stem cell-derived cardiomyocytes attenuates posttransplantation proarrhythmic risk in myocardial infarction. Heart Rhythm. 10, 273-282 (2013).
  6. Liu, Y., et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. Journal of Cardiovascular Electrophysiology. 23, 534-540 (2012).
  7. Liao, S. Y., et al. Improvement of Myocardial Function Following Catheter-Based Renal Denervation in Heart Failure. JACC: Basic to Translational Science. 2 (3), 270-281 (2017).
  8. Liao, S. Y., et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure. Europace. 17 (12), 1875-1883 (2015).
  9. Daehnert, I., Rotzsch, C., Wiener, M., Schneider, P. Rapid right ventricular pacing is an alternative to adenosine in catheter interventional procedures for congenital heart disease. Heart. 90 (9), 1047-1050 (2004).
  10. Hála, P., et al. Tachycardia-Induced Cardiomyopathy as a Chronic Heart Failure Model in Swine. Journal of Visualized Experiments. (132), e57030 (2018).
  11. Santoso, T., et al. Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). Journal of Cardiovascular Translational Research. 7, 545-552 (2014).
  12. Traverse, J. H., et al. Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. Journal of the American Medical Association. 306, 2110-2119 (2011).
  13. Traverse, J. H., et al. Cardiovascular Cell Therapy Research Network (CCTRN). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Journal of the American Medical Association. 308, 2380-2389 (2012).
  14. de Jong, R., Houtgraaf, J. H., Samiei, S., Boersma, E., Duckers, H. J. Intracoronary stem cell infusion after myocardial infarction. A meta-analysis and update on clinical trials. Circulation: Cardiovascular Interventions. 7, 156-167 (2014).
  15. Nowbar, A. N., et al. DAMASCENE writing group. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. British Medical Journal. 348, g2688 (2014).
  16. Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., Hare, J. M. Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials. Circulation Research. 120 (7), 1139-1150 (2017).
  17. Hou, D., et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 112 (9 Suppl), I150-I156 (2005).
  18. Hu, X., et al. A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates: Paracrine Activity Without Remuscularization. Circulation Research. 118, 970-983 (2016).
  19. Chong, J. J., et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 510, 273-277 (2014).
  20. Martens, A., et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction. Artificial Organs. 38, 978-984 (2014).
  21. Shiba, Y., et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 538, 388-391 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved