A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol generates bioparticle microarrays that provide spatially controlled neutrophil swarming. It provides easy access to the mediators that neutrophils release during migration and allows for quantitative imaging analysis.
Neutrophil swarming is a cooperative process by which neutrophils seal off a site of infection and promote tissue reorganization. Swarming has classically been studied in vivo in animal models showing characteristic patterns of cell migration. However, in vivo models have several limitations, including intercellular mediators that are difficult to access and analyze, as well as the inability to directly analyze human neutrophils. Because of these limitations, there is a need for an in vitro platform that studies swarming with human neutrophils and provides easy access to the molecular signals generated during swarming. Here, a multistep microstamping process is used to generate a bioparticle microarray that stimulates swarming by mimicking an in vivo infection. The bioparticle microarray induces neutrophils to swarm in a controlled and stable manner. On the microarray, neutrophils increase in speed and form stable swarms around bioparticle clusters. Additionally, supernatant generated by the neutrophils was analyzed and 16 proteins were discovered to have been differentially expressed over the course of swarming. This in vitro swarming platform facilitates direct analysis of neutrophil migration and protein release in a reproducible, spatially controlled manner.
Neutrophils, the most abundant white blood cell in the bloodstream1, are gaining attention as potential diagnostic and therapeutic targets2,3 because they may be involved in a variety of medical conditions including gout4, sepsis3, trauma5,6, cancer1,7,8, and various autoimmune diseases5,9. Neutrophil swarming is a multistage, tightly regulated process with a complexity that makes it a particularly interesting focus of study5,10,11. During swarming, neutrophils isolate a site of inflammation from the surrounding healthy tissue5,10,11. Proper regulation of neutrophil swarming is essential to promote wound healing and ultimately inflammation resolution5,12. Neutrophil swarming has primarily been studied in vivo in rodent12,13,14,15 and zebrafish10,11,12,15 models. However, the nature of these in vivo animal models gives rise to limitations5. For example, the mediators released by neutrophils during swarming are not easily accessible for analysis5. Additionally, there are many potential sources for a given mediator in vivo, so an in vivo experiment must introduce a genetic deficiency to inhibit cellular production and/or interaction in order to investigate the role of that mediator in a given process13. An in vitro experiment circumvents this complication by enabling neutrophil observation without the context of additional cells. Additionally, research describing human neutrophil coordinated migration is limited16. On an in vitro swarming platform, human neutrophils can be directly analyzed. An in vitro swarming platform could expand upon the knowledge gained from in vivo studies by providing opportunities to fill the gaps left by the limitations of in vivo studies.
To address the need for an in vitro platform that mimics in vivo neutrophil swarming, we developed a microstamping platform that enables us to pattern bioparticle microarrays that stimulate neutrophil swarming in a spatially controlled manner. We generate bioparticle microarrays on glass slides in a two-step process. First, we use microstamping to generate a microarray of cationic polyelectrolyte (CP) spots. Second, we add a solution of bioparticles that adhere to the CP spots via electrostatic interaction. By first patterning the CP layer, we can selectively pattern negatively charged bioparticles to generate the desired neutrophil swarming pattern. The positively charged layer holds the negatively charged bioparticles through the vigorous washing step that removes the bioparticles from the areas on the glass slide that do not have the CP. Additionally, the CP used here, a copolymer of acrylamide and quaternized cationic monomer, is biocompatible, so it does not induce a response from the neutrophils. It has a very high surface charge that immobilizes the micron-sized bioparticles to the glass slide, thus inhibiting neutrophils from removing the particles from the patterned position on the glass slide. This results in bioparticle clusters arranged in a microarray. When we added neutrophils to the microarray, they formed stable swarms around the bioparticle clusters. Through tracking neutrophil migration, we found that swarming neutrophils actively migrate toward the bioparticle clusters. Furthermore, we used this platform to analyze certain mediators that neutrophils release during swarming. We found 16 mediators that are differentially expressed during swarming. Their concentrations follow three general trends over time: increase, decrease, or spike. Our in vitro neutrophil swarming platform facilitates the analysis of spatially controlled human neutrophil swarming, as well as the collection and analysis of mediators released by neutrophil swarming. In a previous publication, we demonstrated that patients with certain medical conditions (trauma, autoimmune disease, and sepsis), had neutrophils that functioned differently than those from healthy donors5. In future research studies, our platform could be used to analyze neutrophil function among a variety of patient populations. This platform can quantitatively analyze the complex coordination involved in neutrophil swarming. Additional studies can be done to provide insight on the neutrophil function of a specific patient population or neutrophil response to a pathogen of interest.
The authors acknowledge the healthy volunteers who kindly donated their blood. Blood specimens were obtained after informed volunteer consent according to institutional review board (IRB) protocol #2018H0268 reviewed by the Biomedical Sciences Committee at The Ohio State University.
1. Microfabrication of bioparticle microarray
2. Sample Preparation
3. Running the assay and image analysis
4. Supernatant collection and protein detection
When neutrophils are added to the bioparticle microarray, neutrophils that contact the bioparticle clusters become activated and initiate the swarming response. The bioparticle microarray was validated using time-lapse fluorescent microscopy to track neutrophil migration toward the bioparticle clusters (Video S1). The migration of individual neutrophil nuclei is tracked as they migrate toward the bioparticle cluster. When neutrophils reach the bioparticle cluster, their nuclei overlap with other nuclei i...
We developed a microstamping platform to generate uniform arrays of bioparticles to stimulate in vitro neutrophil swarming. The in vitro nature of our platform allows us to circumvent the complications that arise with in vivo swarming experiments, namely the poor ability to analyze mediators released by swarming neutrophils5. Additionally, in vivo models are typically performed in rodents11,12,13,
The authors declare no conflicts of interest.
This work was supported by funding from the William G. Lowrie Department of Chemical and Biomolecular Engineering and the Comprehensive Cancer Center at The Ohio State University. Data presented in this report came from images processed using Imaris x64 (ver. 9.3.0 Bitplane) available at the Campus Microscopy and Imaging Facility, The Ohio State University. This facility is supported in part by grant P30 CA016058, National Cancer Institute, Bethesda, MD.
Name | Company | Catalog Number | Comments |
"The Big Easy" EasySep Magnet | STEMCELL Technologies | 18001 | Magnet to use with neutrophil isolation kit |
Cell Incubator | Okolab | 777057437 / 77057343 | Okolab cage incubator for temperature and CO2 control |
EasySep Human Neutrophil Isolation Kit | STEMCELL Technologies | 17957 | Kit for immunomagnetic negative selection of human neutrophils |
Eclipse Ti2 | Nikon Instruments | MEA54010 / MEF55037 | Inverted research microscope |
Escherichia coli (K-12 strain) BioParticles Texas Red conjugate | Invitrogen | E2863 | Bioparticle powder, dissolve in water prior to addition to Zetag® array |
Harris Uni-Core 8-mm biopsy punch | Sigma Aldrich | Z708925 | To cut PDMS stamps |
HetaSep | STEMCELL Technologies | 7906 | Erythrocyte aggregation agent for separating buffy coat from red blood cells in fresh human blood |
Hoechst 33342 | Life Technologies | H3570 | Nucleus fluorescent stain |
Human L1000 Array | Raybiotech Inc. | AAH-BLG-1000-4 | High density array to detect 1000 human proteins |
Human Serum Albumin (HSA) | Sigma Aldrich | A5843 | Low endotoxin HSA, to prepare 2 % solutions in IMDM for isolated neutrophils |
Iscove's Modified Dulbeccos' Medium (IMDM) | Thermo Fisher Scientific | 12440053 | To resuspend isolated neutrophils |
K2-EDTA tubes | Thermo Fisher Scientific | 02-657-32 | Tubes for blood collection |
Low Reflective Chrome Photomask | Front Range Photomask | N/A | Dimensions 5" x 5" x 0.09" (L x W x D) |
Microarray Scanner | Perkin Elmer | ASCNGX00 | Fluorescence reader of protein patterned microdomains |
Microscopy Image Analsysis Software - Imaris | Bitplane | 9.3.0 | Software for automatic cell tracking analysis |
NiS Elements Advanced Research Software Package | Nikon Instruments | MQS31100 | Software for automatic live cell imaging and swarm size calculation |
Poly-L-lysine fluorescein isothiocyanate (PLL-FITC) | Sigma Aldrich | P3069-10MG | 30,000 - 70,000 MW PLL labeled with FITC, used to fluorescently label CP solution |
SecureSeal 8-well Imaging Spacer | Grace Bio-Labs | 654008 | 8-well, 9-mm diameter, adhesive imaging spacer |
Silicon Wafer | University Wafer | 590 | Silicon 100 mm N/P (100) 0- 100 ohm-cm 500 μm SSP test |
Spin Coater | Laurell | WS-650MZ-23NPPB | Used to spincoat a 40-µm layer of photoresist onto silicon wafer |
SU-8 2025 | MicroChem | 2025 | Negative photoresist to make silicon master wafer |
SU-8 Developer | MicroChem | Y020100 | Photoresist developer. Remove non-crosslinked SU-8 2025 from silicon wafer |
Sylgard 184 (polydimethylsiloxane, PDMS) | Dow | 1673921 | 2-part silicone elastomer kit for making microstamps and PDMS wells |
UV Exposure Masking System | Kloé | UV-KUB 2 | Used to crosslink photoresist on silicon wafer through chrome mask with UV light |
Water | Thermo Fisher Scientific | A1287303 | High quality water to dilute bioparticles |
Zetag 8185 | BASF | 8185 | Cationic polyelectrolyte (CP), powder, Copolymer of acrylamide and quaternized cationic monomer, forms "inking solution" for microstamping when dissolved in water |
Zymosan A S. cerevisiae BioParticles Texas Red conjugate | Invitrogen | Z2843 | Bioparticle powder, dissolve in water prior to addition to Zetag array |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved