A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes an experimental process to produce high-titer infectious viral pseudotyped particles (pp) with envelope glycoproteins from two influenza A strains and how to determine their infectivity. This protocol is highly adaptable to develop pps of any other type of enveloped viruses with different envelope glycoproteins.
The occasional direct transmission of the highly pathogenic avian influenza A virus H5N1 (HPAI H5N1) and H7N9 to humans and their lethality are serious public health issues and suggest the possibility of an epidemic. However, our molecular understanding of the virus is rudimentary, and it is necessary to study the biological properties of its envelope proteins as therapeutic targets and to develop strategies to control infection. We developed a solid viral pseudotyped particle (pp) platform to study avian influenza virus, including the functional analysis of its hemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins, the reassortment characteristics of the HAs and NAs, receptors, tropisms, neutralizing antibodies, diagnosis, infectivity, for the purposes of drug development and vaccine design. Here, we describe an experimental procedure to establish pps with the envelope glycoproteins (HA, NA) from two influenza A strains (HAPI H5N1 and 2013 avian H7N9). Their generation is based on the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins into a pp. In addition, we also detail how these pps are quantified with RT-qPCR, and the infectivity detection of native and mismatched virus pps depending on the origin of the HAs and NAs. This system is highly flexible and adaptable and can be used to establish viral pps with envelope glycoproteins that can be incorporated in any other type of enveloped virus. Thus, this viral particle platform can be used to study wild viruses in many research investigations.
The mission of a viral particle is to transport its genome from an infected host cell to a non-infected host cell and to deliver it into the cytoplasm or the nucleus in a replication-competent form1. This process is initially triggered by binding to host cell receptors, followed by fusion of virion and cellular membranes. For enveloped viruses, like influenza viruses, the spike glycoproteins are responsible for receptor binding and fusion1,2. Viral envelope glycoproteins (e.g., pyrogens, antigens), are involved in many important properties and events, such as virus lifecycle initiation (binding and fusion), viral pathogenesis, immunogenicity, host cell apoptosis and cellular tropism, the cellular endocytic pathway, as well as interspecies transmission and reassortment1,3,4,5,6,7. Research on viral envelope glycoproteins will help us understand many aspects of the viral infection process. Pseudotyped viral particles (pp), also termed pseudovirions or pseudoparticles, can be generated through a pseudotyping technique8,9,10. This technology has been used to develop pseudotyped particles of many viruses, including hepatitis C11,12, hepatitis B13, vesicular stomatitis virus (VSV)14,15, and influenza virus16,17,18,19. This technology is based on the Gag-Pol protein of lentiviruses or other retroviruses.
Pseudotyped viral particles can be obtained using a three-plasmid system by cotransfecting a viral envelope glycoprotein expression plasmid, a retroviral packaging plasmid missing the envelope env gene, and a separate reporter plasmid into pp producer cells. The retrovirus is assembled by its Gag protein, and it buds from an infected cell membrane that expresses the virus envelope protein1. Therefore, it is possible to obtain high titer influenza pps using the retrovirus Gag protein to produce buds on a cellular membrane expressing influenza HA and NA. In our previous studies, HAs/NAs in all combinations were functional and able to perform their corresponding functions in the viral life cycle16,17,18,20,21. These pps are used to investigate influenza biological characteristics, including hemagglutination, neuraminidase activity, HA-receptor binding tropism, and infectivity. Because HA and NA are both important surface functional proteins in the viral life cycle, mismatched HAs and NAs derived from different strains of influenza can partly demonstrate reassortment between them. Here, we generate eight types of influenza pps by combining two HAs and two NAs (derived from the HPAI H5N1 strain and the H7N9 stain), using a three-plasmid pseudotyping system. These eight types of pps include two native pps, H5N1pp, H7N9pp; two mismatched pps, (H5+N9)pp, (H7+N1)pp; and four pps only harboring a single glycoprotein (HA or NA), H5pp, N1pp, H7pp, N9pp. Studies on the influenza virus, such as H5N1 and H7N9, are limited by biosafety requirements. All studies of the wild influenza virus strains should be performed in a biosafety level 3 (BSL-3) laboratory. Pseudotyped viral particle technology can be used to package an artificial virion in a biosafety level 2 (BSL-2) setting. Therefore, pps represent a safer and useful tool to study the influenza virus processes depending on its two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA).
This protocol describes the generation of these pps with a three-plasmid cotransfection strategy (overviewed in Figure 1), how to quantify pps, and infectivity detection. The pp production involves three kinds of plasmids (Figure 1). The gag-pol gene, which encodes the retrovirus Gag-Pol protein, was cloned from a retrovirus packaging kit and inserted into the pcDNA 3.1 plasmid and named pcDNA-Gag-Pol. The enhanced green fluorescent protein (eGFP) gene, which encodes Green Fluorescent Protein, was cloned from pTRE-EGFP vector, inserted into the pcDNA 3.1 plasmid, and called pcDNA-GFP. During cloning, a packaging signal (ψ) sequence was added via a primer. The HA and NA genes were cloned into a pVRC plasmid, named pVRC-HA and pVRC-NA, respectively. The last plasmid encodes the fusion protein and can be replaced with any other fusion protein of interest. Our pseudotyping platform includes two glycoprotein expression plasmids: pVRC-HA and pVRC-NA. This can simplify the research on reassortment between different virus strains in a BSL-2 setting.
1. Day 1: Cell Culture and Seeding
2. Day 2: Four-plasmid Cotransfection Mediated by Lipofection
3. Day 3: Susceptible Cells Seeding
4. Day 4: Pseudotyped Viral Particle Collection, Quantification, and Infectivity Assay
5. Day 5 or 6: Infectivity Detection
Depending on the general procedure described above, we have generated 10 types of pps combining two group HAs/NAs or VSV-G glycoprotein or no-envelope glycoproteins (shown in Table 1). Seven of them are infectious. The pps that harbor no-envelope glycoprotein or only harbor NA did not show any infectivity here. The influenza pp production procedure is overviewed in Figure 1. Transmission electron micrographs of pps (e.g., H5N1pp) are shown in Figure 3
In this protocol, we describe a method to produce influenza virus pseudotyped particles (pp) in a BSL-2 setting. The reporter plasmid pcDNA-GFP is incorporated into the pps and can be used to quantify pps by FACS in an infectivity assay. We chose two types of susceptible cell lines because they are widely used in influenza research. MDCK cells would provide a good control to the variable immortalized human cells used in these studies.
This protocol is based on the retrovirus MLV, which can inc...
The authors have nothing to disclose.
This work was supported by grants from Zhejiang Provincial Medicine and Health Science and Technology Plan (Grant Numbers, 2017KY538), Hangzhou Municipal Medicine and Health Science and Technology Plan (Grant Numbers, OO20190070), Hangzhou Medical Science and Technology key Project (Grant Numbers, 2014Z11) and Hangzhou municipal autonomous application project of social development and scientific research (Grant Numbers, 20191203B134).
Name | Company | Catalog Number | Comments |
Benzonase Nuclease | Millipore | 70664 | Effective viscosity reduction and removal of nucleic acids from protein solutions |
Clear Flat Bottom Polystyrene TC-treated Microplates (96-well) | Corning | 3599 | Treated for optimal cell attachment Sterilized by gamma radiation and certified nonpyrogenic Individual alphanumeric codes for well identification |
Clear TC-treated Multiple Well Plates (6-wells) | Costar | 3516 | Individual alphanumerical codes for well identification Treated for optimal cell attachment Sterilized by gamma irradiation |
Dulbecco's modified essential medium (DMEM) | Gibco | 11965092 | A widely used basal medium for supporting the growth of many different mammalian cells |
Fetal bovine serum | Excell | FND500 | fetal bovine sera that can offer excellent value for basic cell culture, specialty research, and specific assays |
Fluorescence Activated Cell Sorting (FACS) | Beckman coulter | cytoflex | |
Human alveolar adenocarcinoma A549 cells | ATCC | CRM-CCL-185 | |
Human embryonic kidney (HEK) HEK-293T/17 cells | ATCC | CRL-11268 | A versatile transfection reagent that has been shown to effectively transfect the widest variety of adherent and suspension cell lines |
Inverted fluorescent biological microscope | Olympus | BX51-32P01-FLB3 | |
Inverted light microscope | Olympus | CKX31-12PHP | |
Lipofectamine 2000 Transfection Reagent | Invitrogen | 11668019 | Rapid, sensitive and precise probe-based qPCR detection and quantitation of target RNA targets. |
Luna Universal Probe One-Step RT-qPCR Kit | NEB | E3006L | Will withstand up to 14,000 RCF RNase-/DNase-free Nonpyrogenic |
Madin-Darby Canine Kidney (MDCK) cells | ATCC | CCL-34 | |
MaxyClear Snaplock Microcentrifuge Tube (1.5 mL) | Axygen | MCT-150-C | 33 mm, gamma sterilized |
Millex-HV Syringe Filter Unit, 0.45 µm, PVDF | Millipore | SLHV033RS | an improved Minimal Essential Medium (MEM) that allows for a reduction of Fetal Bovine Serum supplementation by at least 50% with no change in cell growth rate or morphology. Opti-MEM I medium is also recommended for use with cationic lipid transfection reagents, such as Lipofectamine reagent. |
Opti-MEM I Reduced Serum Medium | Gibco | 11058021 | The antibiotics penicillin and streptomycin are used to prevent bacterial contamination of cell cultures due to their effective combined action against gram-positive and gram-negative bacteria. |
penicillin-streptomycin | Gibco | 15140122 | Maximum RCF is 12,500 xg Temperature range from -80 °C to 120 °C RNase-/DNase-free Sterile |
PP Centrifuge Tubes (15 mL) | Corning | 430791 | a stable and highly reactive serine protease |
Proteinase K | Beyotime | ST532 | Treated for optimal cell attachment Sterilized by gamma radiation and certified nonpyrogenic |
TC-treated Culture Dish (60mm) | Corning | 430166 | Trypsin from bovine pancreas TPCK Treated, essentially salt-free, lyophilized powder, ≥10,000 BAEE units/mg protein |
TPCK-trypsin | Sigma | T1426 | This liquid formulation of trypsin contains EDTA and phenol red. Gibco Trypsin-EDTA is made from trypsin powder, an irradiated mixture of proteases derived from porcine pancreas. Due to its digestive strength, trypsin is widely used for cell dissociation, routine cell culture passaging, and primary tissue dissociation. The trypsin concentration required for dissociation varies with cell type and experimental requirements. |
Trypsin-EDTA (0.25%), phenol red | Gibco | 25200056 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved