JoVE Logo
Faculty Resource Center

Sign In

Abstract

Immunology and Infection

P. aeruginosa Infected 3D Co-Culture of Bronchial Epithelial Cells and Macrophages at Air-Liquid Interface for Preclinical Evaluation of Anti-Infectives

Published: June 15th, 2020

DOI:

10.3791/61069

1Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 2Department of Pharmacy, Saarland University, 3Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 4Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital
* These authors contributed equally

fDrug research for the treatment of lung infections is progressing towards predictive in vitro models of high complexity. The multifaceted presence of bacteria in lung models can re-adapt epithelial arrangement, while immune cells coordinate an inflammatory response against the bacteria in the microenvironment. While in vivo models have been the choice for testing new anti-infectives in the context of cystic fibrosis, they still do not accurately mimic the in vivo conditions of such diseases in humans and the treatment outcomes. Complex in vitro models of the infected airways based on human cells (bronchial epithelial and macrophages) and relevant pathogens could bridge this gap and facilitate the translation of new anti-infectives into the clinic. For such purposes, a co-culture model of the human cystic fibrosis bronchial epithelial cell line CFBE41o- and THP-1 monocyte-derived macrophages has been established, mimicking an infection of the human bronchial mucosa by P. aeruginosa at air-liquid interface (ALI) conditions. This model is set up in seven days, and the following parameters are simultaneously assessed: epithelial barrier integrity, macrophage transmigration, bacterial survival, and inflammation. The present protocol describes a robust and reproducible system for evaluating drug efficacy and host responses that could be relevant for discovering new anti-infectives and optimizing their aerosol delivery to the lungs.

Tags

Keywords P Aeruginosa

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved