JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

An Ex Vivo Choroid Sprouting Assay of Ocular Microvascular Angiogenesis

Published: August 6th, 2020

DOI:

10.3791/61677

1Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 2Department of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, 3Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital

This protocol presents choroid sprouting assay, an ex vivo model of microvascular proliferation. This assay can be used to assess pathways involved in proliferating choroidal micro vessels and assess drug treatments using wild type and genetically modified mouse tissue.

Pathological choroidal angiogenesis, a salient feature of age-related macular degeneration, leads to vision impairment and blindness. Endothelial cell (EC) proliferation assays using human retinal microvascular endothelial cells (HRMECs) or isolated primary retinal ECs are widely used in vitro models to study retinal angiogenesis. However, isolating pure murine retinal endothelial cells is technically challenging and retinal ECs may have different proliferation responses than choroidal endothelial cells and different cell/cell interactions. A highly reproducible ex vivo choroidal sprouting assay as a model of choroidal microvascular proliferation was developed. This model includes the interaction between choroid vasculature (EC, macrophages, pericytes) and retinal pigment epithelium (RPE). Mouse RPE/choroid/scleral explants are isolated and incubated in growth-factor-reduced basal membrane extract (BME) (day 0). Medium is changed every other day and choroid sprouting is quantified at day 6. The images of individual choroid explant are taken with an inverted phase microscope and the sprouting area is quantified using a semi-automated macro plug-in to the ImageJ software developed in this lab. This reproducible ex vivo choroidal sprouting assay can be used to assess compounds for potential treatment and for microvascular disease research to assess pathways involved in choroidal micro vessel proliferation using wild type and genetically modified mouse tissue.

Choroidal angiogenesis dysregulation is associated with neovascular age-related macular degeneration (AMD)1. The choroid is a microvascular bed present underneath the retinal pigment epithelium (RPE). It has been shown that reduced blood flow in the choroid is associated with progression of AMD2. The intricate relationship between vascular endothelium, RPE, macrophages, pericytes and other cells is responsible for the homeostasis of the tissue3,4,5. Therefore, a reproducible assay modeling choroidal microenvironment is critical ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal experiments described were approved by the Institutional Animal Care and Use Committee at Boston Children’s Hospital (ARCH protocol number 19-04-3913R).

1. Preparation

  1. Add 5 mL of Penicillin/Streptomycin (10000 U/mL) and 5 mL and 10 mL of commercially available supplements to 500 mL of complete classic medium with serum. Aliquot 50 mL of the medium initially.
    NOTE: Do not return any medium back to the stock to avoid contamination.
  2. Put an aliquot of.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Comparison of choroid sprouting growth per day

We dissected the choroid with sclera, embedded in BME and cultured them for 6 days (Figure 1). The choroid sprouting in C57BL/6J mice from day 3 to day 6 were examined with a microscope and quantified with SWIFT-Choroid a semi-automated quantification method in ImageJ. In a representative case, the choroidal sprouting area (the vessels extending from the explant, excluding the explant itself) was 0.38.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The choroidal sprouting assay aids research in neovascular AMD9,10,18,19,20. Choroid explants can be isolated from mice as well as rats and humans17,21. The choroid explant includes ECs, macrophages, and pericytes17. In this assay the interaction between choroidal ECs and adjace.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The work was supported by Grants from the Manpei Suzuki Diabetic Foundation (YT), Boston Children's Hospital OFD/BTREC/CTREC Faculty Career Development Grant, Boston Children's Hospital Ophthalmology Foundation, BCH Pilot Award, BCH Manton Center Fellowship, and Little Giraffe Foundation (ZF), The German Research Foundation (DFG; to BC [CA1940/1-1]), NIH R24EY024868, EY017017, R01EY01717-13S1, EY030904-01, BCH IDDRC (1U54HD090255), Massachusetts Lions Eye Foundation (LEHS).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
AnaSed (Xylazine)AKORN59339-110-20
Basal membrane extract (BME) MatrigelBD Biosciences354230
Cell culture dishNEST70400110cm
Complete classic medium with serum and CultureBoostCell systems4Z0-500
Ethyl alcohol 200 ProofPharmco111000200use for 70%
KimwipesKimberly-Clark06-666
MicroscopeZEISSAxio Observer Z1
Penicillin/StreptomycinGIBCO1514010000 U/mL
Tissue culture plate (24-well)Olympus25-107
VetaKet CIII (Ketamine)AKORN59399-114-10

  1. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 122 (4), 598-614 (2004).
  2. Pemp, B., Schmetterer, L. Ocular blood flow in diabetes and age-related macular degeneration. Canadian Journal of Ophthalmology. 43 (3), 295-301 (2008).
  3. Murakami, Y., Ishikawa, K., Nakao, S., Sonoda, K. H. Innate immune response in retinal homeostasis and inflammatory disorders. Progress in Retinal and Eye Research. 74, 100778 (2020).
  4. Fu, Z., et al. Dyslipidemia in retinal metabolic disorders. EMBO Molecular Medicine. 11 (10), 10473 (2019).
  5. Daruich, A., et al. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research. 63, 20-68 (2018).
  6. Tomita, Y., et al. Long-Acting FGF21 Inhibits Retinal Vascular Leakage in In Vivo and In Vitro Models. International Journal of Molecular Sciences. 21 (4), 21041188 (2020).
  7. Maisto, R., et al. ARPE-19-derived VEGF-containing exosomes promote neovascularization in HUVEC: the role of the melanocortin receptor 5. Cell Cycle. 18 (4), 413-424 (2019).
  8. Mazzoni, J., et al. The Wnt Inhibitor Apcdd1 Coordinates Vascular Remodeling and Barrier Maturation of Retinal Blood Vessels. Neuron. 96 (5), 1055-1069 (2017).
  9. Fu, Z., et al. Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice. Investigative Ophthalmology and Visual Sciences. 58 (10), 3862-3870 (2017).
  10. Gong, Y., et al. Cytochrome P450 Oxidase 2C Inhibition Adds to omega-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization. Arteriosclerosis, Thrombosis and Vascular Biology. 36 (9), 1919-1927 (2016).
  11. Nicosia, R. F., Zorzi, P., Ligresti, G., Morishita, A., Aplin, A. C. Paracrine regulation of angiogenesis by different cell types in the aorta ring model. International Journal of Developmental Biology. 55 (4-5), 447-453 (2011).
  12. Bellacen, K., Lewis, E. C. Aortic ring assay. Journal of Visulaized Experiments. (33), e1564 (2009).
  13. Masson, V. V., et al. Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biological Procedures Online. 4, 24-31 (2002).
  14. Katakia, Y. T., et al. Ex vivo model for studying endothelial tip cells: Revisiting the classical aortic-ring assay. Microvascular Research. 128, 103939 (2020).
  15. Rezzola, S., et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis. 17 (3), 429-442 (2014).
  16. Rezzola, S., et al. A novel ex vivo murine retina angiogenesis (EMRA) assay. Experimental Eye Research. 112, 51-56 (2013).
  17. Shao, Z., et al. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One. 8 (7), 69552 (2013).
  18. Tomita, Y., et al. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis. 23, 385-394 (2020).
  19. Li, J., et al. Endothelial TWIST1 promotes pathological ocular angiogenesis. Investigative Ophthalmology and Vision Science. 55 (12), 8267-8277 (2014).
  20. Liu, C. H., et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization. Proceedings of the National Academy of Science U. S. A. 112 (39), 12163-12168 (2015).
  21. Zhou, Q., et al. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. Elife. 8, 40470 (2019).
  22. Kobayashi, S., Fukuta, M., Kontani, H., Yanagita, S., Kimura, I. A quantitative assay for angiogenesis of cultured choroidal tissues in streptozotocin-diabetic Wistar and spontaneously diabetic GK rats. Japanese Journal of Pharmacology. 78 (4), 471-478 (1998).
  23. Kobayashi, S., et al. Inhibitory effects of tetrandrine and related synthetic compounds on angiogenesis in streptozotocin-diabetic rodents. Biological and Pharmaceutical Bulletin. 22 (4), 360-365 (1999).
  24. Kobayashi, S., Shinohara, H., Tsuneki, H., Nagai, R., Horiuchi, S. N(epsilon)-(carboxymethyl)lysine proliferated CD34(+) cells from rat choroidal explant in culture. Biological and Pharmaceutical Bulletin. 27 (9), 1382-1387 (2004).
  25. Kobayashi, S., et al. Overproduction of N(epsilon)-(carboxymethyl)lysine-induced neovascularization in cultured choroidal explant of streptozotocin-diabetic rat. Biological and Pharmaceutical Bulletin. 27 (10), 1565-1571 (2004).
  26. Bergers, G., Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 7 (4), 452-464 (2005).
  27. Browning, A. C., Stewart, E. A., Amoaku, W. M. Reply to: Phenotypic plasticity of human umbilical vein endothelial cells. British Journal of Ophthalmology. 96 (9), 1275-1276 (2012).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved