JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

En Ex Vivo Choroid Spirende Assay af okulær mikrovaskulær angiogenese

Published: August 6th, 2020

DOI:

10.3791/61677

1Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 2Department of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, 3Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital

Denne protokol præsenterer choroid spiring assay, en ex vivo model af mikrovaskulær spredning. Denne analyse kan bruges til at vurdere veje involveret i prolifererende choroidal mikro fartøjer og vurdere narkotika behandlinger ved hjælp af vilde type og genetisk modificerede musevæv.

Patologisk choroidal angiogenese, en fremtrædende funktion af aldersrelateret makuladegeneration, fører til synsnedsættelse og blindhed. Endotelcelle (EF) spredningsanalyser ved hjælp af humane retinale mikrovaskulære endotelceller (HRMEC' er) eller isolerede primære nethinde-EC'er anvendes i vid udstrækning in vitro-modeller til undersøgelse af retinal angiogenese. Men, isolere ren murine retinale endotelceller er teknisk udfordrende og retinale ECs kan have forskellige spredning svar end choroidal endotelceller og forskellige celle / celle interaktioner. En meget reproducerbar ex vivo choroidal spiring assay som en model af choroidal mikrovaskulær spredning blev udviklet. Denne model omfatter samspillet mellem choroid vaskulatur (EF, makrofager, pericytter) og retinale pigment epitel (RPE). Muse-RPE/choroid/scleral explants isoleres og inkuberes i vækstfaktorredrimeret basalmembranekstrakt (BME) (dag 0). Medium ændres hver anden dag og choroid spiring kvantificeres på dag 6. Billederne af individuelle choroid explant er taget med en omvendt fase mikroskop og spiring område kvantificeres ved hjælp af en semi-automatiseret makro plug-in til ImageJ software udviklet i dette laboratorium. Denne reproducerbare ex vivo choroidal spiringsanalyse kan anvendes til at vurdere forbindelser til potentiel behandling og til mikrovaskulær sygdomsforskning for at vurdere veje, der er involveret i choroidal mikrokarprolifeion ved hjælp af vildtype og genetisk modificeret musevæv.

Choroidal angiogenese dysregulation er forbundet med neovaskulær aldersrelateret makuladegeneration (AMD)1. Den choroid er en mikrovaskulær seng til stede under retinale pigment epitel (RPE). Det er blevet påvist, at nedsat blodgennemstrømning i choroid er forbundet med progression af AMD2. Det indviklede forhold mellem vaskulær endotel, RPE, makrofager, pericytter og andre celler er ansvarlig for homøostaseafvævet3,4,5. Derfor er en reproducerbar analyse modellering choroidal mikromiljø er afgørende for studiet af neovaskulær A....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Alle beskrevne dyreforsøg blev godkendt af Udvalget for Institutionel Dyrepleje og -anvendelse på Boston Children's Hospital (ARCH-protokolnummer 19-04-3913R).

1. Forberedelse

  1. Der tilsættes 5 ml Penicillin/Streptomycin (10000 U/ml) og 5 ml og 10 ml kommercielt tilgængelige kosttilskud til 500 ml komplet klassisk medium med serum. Aliquot 50 ml af mediet i første omgang.
    BEMÆRK: Tilbagelever ikke noget medium til lageret for at undgå kontaminering.
  2. Sæt en aliquot .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Sammenligning af choroid spirende vækst per dag

Vi dissekeret choroid med sclera, indlejret i BME og dyrkede dem i 6 dage(Figur 1). Choroid spiring i C57BL/6J mus fra dag 3 til dag 6 blev undersøgt med et mikroskop og kvantificeret med SWIFT-Choroid en semi-automatiseret kvantificering metode i ImageJ. I et repræsentativt tilfælde var det choroidalspiringsområde (de fartøjer, der strækker sig fra explanten, bortset fra selve explanten) 0,38.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Den choroidal spirende assay hjælpemidler forskning i neovaskulær AMD9,10,18,19,20. Choroid explants kan isoleres fra mus samt rotter og mennesker17,21. Choroid explant omfatter EC'er, makrofager og pericytes17. I denne analyse samspillet mellem choroidal ECs og tilstødende c.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Arbejdet blev støttet af Grants fra Manpei Suzuki Diabetic Foundation (YT), Boston Children's Hospital OFD/BTREC/CTREC Faculty Career Development Grant, Boston Children's Hospital Oftalmology Foundation, BCH Pilot Award, BCH Manton Center Fellowship og Little Giraffe Foundation (ZF), The German Research Foundation (DFG; til BC [CA1940/1-1]), NIH R24EY024868, EY017017, R01EY01717-13S1, EY030904-01, BCH IDDRC (1U54HD090255), Massachusetts Lions Eye Foundation (LEHS).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
AnaSed (Xylazine)AKORN59339-110-20
Basal membrane extract (BME) MatrigelBD Biosciences354230
Cell culture dishNEST70400110cm
Complete classic medium with serum and CultureBoostCell systems4Z0-500
Ethyl alcohol 200 ProofPharmco111000200use for 70%
KimwipesKimberly-Clark06-666
MicroscopeZEISSAxio Observer Z1
Penicillin/StreptomycinGIBCO1514010000 U/mL
Tissue culture plate (24-well)Olympus25-107
VetaKet CIII (Ketamine)AKORN59399-114-10

  1. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 122 (4), 598-614 (2004).
  2. Pemp, B., Schmetterer, L. Ocular blood flow in diabetes and age-related macular degeneration. Canadian Journal of Ophthalmology. 43 (3), 295-301 (2008).
  3. Murakami, Y., Ishikawa, K., Nakao, S., Sonoda, K. H. Innate immune response in retinal homeostasis and inflammatory disorders. Progress in Retinal and Eye Research. 74, 100778 (2020).
  4. Fu, Z., et al. Dyslipidemia in retinal metabolic disorders. EMBO Molecular Medicine. 11 (10), 10473 (2019).
  5. Daruich, A., et al. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research. 63, 20-68 (2018).
  6. Tomita, Y., et al. Long-Acting FGF21 Inhibits Retinal Vascular Leakage in In Vivo and In Vitro Models. International Journal of Molecular Sciences. 21 (4), 21041188 (2020).
  7. Maisto, R., et al. ARPE-19-derived VEGF-containing exosomes promote neovascularization in HUVEC: the role of the melanocortin receptor 5. Cell Cycle. 18 (4), 413-424 (2019).
  8. Mazzoni, J., et al. The Wnt Inhibitor Apcdd1 Coordinates Vascular Remodeling and Barrier Maturation of Retinal Blood Vessels. Neuron. 96 (5), 1055-1069 (2017).
  9. Fu, Z., et al. Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice. Investigative Ophthalmology and Visual Sciences. 58 (10), 3862-3870 (2017).
  10. Gong, Y., et al. Cytochrome P450 Oxidase 2C Inhibition Adds to omega-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization. Arteriosclerosis, Thrombosis and Vascular Biology. 36 (9), 1919-1927 (2016).
  11. Nicosia, R. F., Zorzi, P., Ligresti, G., Morishita, A., Aplin, A. C. Paracrine regulation of angiogenesis by different cell types in the aorta ring model. International Journal of Developmental Biology. 55 (4-5), 447-453 (2011).
  12. Bellacen, K., Lewis, E. C. Aortic ring assay. Journal of Visulaized Experiments. (33), e1564 (2009).
  13. Masson, V. V., et al. Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biological Procedures Online. 4, 24-31 (2002).
  14. Katakia, Y. T., et al. Ex vivo model for studying endothelial tip cells: Revisiting the classical aortic-ring assay. Microvascular Research. 128, 103939 (2020).
  15. Rezzola, S., et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis. 17 (3), 429-442 (2014).
  16. Rezzola, S., et al. A novel ex vivo murine retina angiogenesis (EMRA) assay. Experimental Eye Research. 112, 51-56 (2013).
  17. Shao, Z., et al. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One. 8 (7), 69552 (2013).
  18. Tomita, Y., et al. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis. 23, 385-394 (2020).
  19. Li, J., et al. Endothelial TWIST1 promotes pathological ocular angiogenesis. Investigative Ophthalmology and Vision Science. 55 (12), 8267-8277 (2014).
  20. Liu, C. H., et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization. Proceedings of the National Academy of Science U. S. A. 112 (39), 12163-12168 (2015).
  21. Zhou, Q., et al. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. Elife. 8, 40470 (2019).
  22. Kobayashi, S., Fukuta, M., Kontani, H., Yanagita, S., Kimura, I. A quantitative assay for angiogenesis of cultured choroidal tissues in streptozotocin-diabetic Wistar and spontaneously diabetic GK rats. Japanese Journal of Pharmacology. 78 (4), 471-478 (1998).
  23. Kobayashi, S., et al. Inhibitory effects of tetrandrine and related synthetic compounds on angiogenesis in streptozotocin-diabetic rodents. Biological and Pharmaceutical Bulletin. 22 (4), 360-365 (1999).
  24. Kobayashi, S., Shinohara, H., Tsuneki, H., Nagai, R., Horiuchi, S. N(epsilon)-(carboxymethyl)lysine proliferated CD34(+) cells from rat choroidal explant in culture. Biological and Pharmaceutical Bulletin. 27 (9), 1382-1387 (2004).
  25. Kobayashi, S., et al. Overproduction of N(epsilon)-(carboxymethyl)lysine-induced neovascularization in cultured choroidal explant of streptozotocin-diabetic rat. Biological and Pharmaceutical Bulletin. 27 (10), 1565-1571 (2004).
  26. Bergers, G., Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 7 (4), 452-464 (2005).
  27. Browning, A. C., Stewart, E. A., Amoaku, W. M. Reply to: Phenotypic plasticity of human umbilical vein endothelial cells. British Journal of Ophthalmology. 96 (9), 1275-1276 (2012).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved