JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Live-cell Imaging of Single-Cell Arrays (LISCA) - a Versatile Technique to Quantify Cellular Kinetics

Published: March 18th, 2021

DOI:

10.3791/62025

1Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany

We present a method for the acquisition of fluorescence reporter time courses from single cells using micropatterned arrays. The protocol describes the preparation of single-cell arrays, the setup and operation of live-cell scanning time-lapse microscopy and an open-source image analysis tool for automated preselection, visual control and tracking of cell-integrated fluorescence time courses per adhesion site.

Live-cell Imaging of Single-Cell Arrays (LISCA) is a versatile method to collect time courses of fluorescence signals from individual cells in high throughput. In general, the acquisition of single-cell time courses from cultured cells is hampered by cell motility and diversity of cell shapes. Adhesive micro-arrays standardize single-cell conditions and facilitate image analysis. LISCA combines single-cell microarrays with scanning time-lapse microscopy and automated image processing. Here, we describe the experimental steps of taking single-cell fluorescence time courses in a LISCA format. We transfect cells adherent to a micropatterned array using mRNA encoding for enhanced green fluorescent protein (eGFP) and monitor the eGFP expression kinetics of hundreds of cells in parallel via scanning time-lapse microscopy. The image data stacks are automatically processed by newly developed software that integrates fluorescence intensity over selected cell contours to generate single-cell fluorescence time courses. We demonstrate that eGFP expression time courses after mRNA transfection are well described by a simple kinetic translation model that reveals expression and degradation rates of mRNA. Further applications of LISCA for event time correlations of multiple markers in the context of signaling apoptosis are discussed.

In recent years, the importance of single-cell experiments has become apparent. Data from single cells allow the investigation of cell-to-cell variability, the resolution of intracellular parameter correlations and the detection of cellular kinetics that remain hidden in ensemble measurements1,2,3. In order to investigate cellular kinetics of thousands of single cells in parallel, new approaches are needed that enable monitoring the cells under standardized conditions over a time period of several hours up to several days followed by a quantitative data analysis .css-f1q1l5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;background-image:linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 0.8) 40%, rgba(255, 255, 255, 1) 100%);width:100%;height:100%;position:absolute;bottom:0px;left:0px;font-size:var(--chakra-fontSizes-lg);color:#676B82;}

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 2
Figure 2: Data acquisition combining single-cell microarrays (A) with scanning time-lapse microscopy (B). As preparation of the time-lapse experiment, a single-cell array with a 2D micropattern of adhesion squares is prepared (1), followed by cell seeding and the alignment of the cells on the micropattern (2) as well as the connection of a perfusion system to the six-channel slide,.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The LISCA approach enables to efficiently collect fluorescence time courses from single cells. As a representative example we outline how the LISCA method is applied to measure single-cell eGFP expression after transfection. The data of the LISCA experiment is used to assess mRNA delivery kinetics, which is important for the development of efficient mRNA drugs.

In particular we demonstrate the different impact of two lipid-based mRNA delivery systems with respect to the time point of translati.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here we described LISCA as a versatile technique to follow cellular kinetics of intracellular fluorescent labels at the single-cell level. In order to perform a successful LISCA experiment, each of the described steps of the protocol section must be established individually and then all steps must be combined. Each of the three major aspects of LISCA feature crucial steps.

Single-cell microarray fabrication
The quality of the microarray is crucial as the cellular alignment on th.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by grants from the German Science Foundation (DFG) to Collaborative Research Center (SFB) 1032. Support by the German Federal Ministry of Education, Research and Technology (BMBF) under the cooperative project 05K2018-2017-06716 Medisoft as well as a grant from the Bayerische Forschungsstiftung are gratefully acknowledged. Anita Reiser was supported by a DFG Fellowship through the Graduate School of Quantitative Biosciences Munich (QBM).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Adtech Polymer Engineering PTFE Microtubing  Fisher Scientific 10178071
baking oven Binder 9010-0190
CFI Plan Fluor DL 10x Nikon MRH20100
Desiccator Roth NX07.1
Eclipse Ti-E Nikon
eGFP mRNA Trilink L-7601
Female Luer to Tube Connector MEDNET FTL210-6005
Fetal bovine serum Thermo Fisher 10270106
Fibronectin Yo Proteins 663
Filter set eGFP AHF F46-002
Fisherbrand Translucent Platinum-Cured Silicone Tubing Fisher Scientific 11768088
HEPES (1 M) Thermo Fisher 15630080
Incubation Box Okolab OKO-H201
incubator Binder 9040-0012
L-15 without phenol red Thermo Fisher 21083027
Lipofectamine 2000 Thermo Fisher 11668027
Male Luer in-house fabricated consisting of teflon
Male Luer to Tube Connector MEDNET MTLS210-6005 alternative to in-house fabricated male luers
NaCl (5 M) Thermo Fisher AM9760G
Needleless Valve to Male Luer Connector MEDNET NVFMLLPC
NIS Elements Nikon Imaging software Version 5.02.00
NOA81 Thorlabs NOA81 Fast Curing Optical Adhesive for tube system assembly
Opti-MEM Thermo Fisher 31985062
PCO edge 4.2 M-USB-HQ-PCO pco
Phosphate buffered saline (PBS) in-house prepared
Plasma Cleaner Diener Femto Pico-BRS
PLL(20 kDa)-g[3.5]-PEG(2 kDa) SuSoS AG
silicon wafer mit mircorstructures in-house fabricated
Sola Light Engine Lumencor
sticky slide VI 0.4  ibidi 80608
Sylgard 184 Silicone Elastomer Kit Dow Corning 1673921
Tango 2 Märzhäuser 00-24-626-0000
Ultrapure water in-house prepared
uncoated coverslips ibidi 10813
Injekt-F Solo, 1 mL Omilab 9166017V with replacement sporn

  1. Altschuler, S. J., Wu, L. F. Cellular heterogeneity: do differences make a difference. Cell. 141 (4), 559-563 (2010).
  2. Locke, J. C., Elowitz, M. B. Using movies to analyse gene circuit dynamics in single cells. Nature Reviews Microbiology. 7 (5), 383-392 (2009).
  3. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 459 (7245), 428-432 (2009).
  4. El-Ali, J., Sorger, P. K., Jensen, K. F. Cells on chips. Nature. 442 (7101), 403-411 (2006).
  5. Segerer, F. J., et al. Versatile method to generate multiple types of micropatterns. Biointerphases. 11 (1), 011005 (2016).
  6. Piel, M., Théry, M. . Micropatterning in cell biology, part A/B/C. , (2014).
  7. Reiser, A., Zorn, M. L., Murschhauser, A., Rädler, J. O., Ertl, P., Rothbauer, M. . Cell-Based Microarrays: Methods and Protocols. , 41-54 (2018).
  8. Picone, R., Baum, B., McKendry, R. . Methods in cell biology. 119, 73-90 (2014).
  9. Reiser, A. . Single-cell time courses of mRNA transport and translation kinetics. , (2019).
  10. . Softmatter LMU-Raedler Group Available from: https://github.com/SoftmatterLMU-RaedlerGroup/pyama (2020)
  11. . MIAAB, 29262 Available from: https://github.com/SoftmatterLMU-RaedlerGroup/pyama (2020)
  12. Reiser, A., et al. Correlation of mRNA delivery timing and protein expression in lipid-based transfection. Integrative Biology. 11 (9), 362-371 (2019).
  13. Reiser, A., Woschée, D., Mehrotra, N., Krzysztoń, R. S., Strey, H. H., Rädler, J. O. Supplementing data and code for: "Correlation of mRNA delivery timing and protein expression in lipid-based transfection". Zenodo. , (2019).
  14. Ferizi, M., et al. Stability analysis of chemically modified mRNA using micropattern-based single-cell arrays. Lab on a Chip. 15 (17), 3561-3571 (2015).
  15. Fröhlich, F., et al. Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. NPJ systems biology and applications. 4 (1), 1-12 (2018).
  16. Krzysztoń, R., et al. Single-cell kinetics of siRNA-mediated mRNA degradation. Nanomedicine: Nanotechnology, Biology and Medicine. 21, 102077 (2019).
  17. Röttgermann, P. J., Alberola, A. P., Rädler, J. O. Cellular self-organization on micro-structured surfaces. Soft Matter. 10 (14), 2397-2404 (2014).
  18. Röttgermann, P. J., Dawson, K. A., Rädler, J. O. Time-resolved study of nanoparticle induced apoptosis using microfabricated single cell arrays. Microarrays. 5 (2), 8 (2016).
  19. Murschhauser, A., et al. A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death. Communications Biology. 2 (1), 1-11 (2019).
  20. Chatzopoulou, E. I., et al. Chip-based platform for dynamic analysis of NK cell cytolysis mediated by a triplebody. Analyst. 141 (7), 2284-2295 (2016).
  21. Sztilkovics, M., et al. Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensor and robotic fluidic force microscopy. Scientific Reports. 10 (1), 1-13 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved