JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Biplanar Videoradiography to Study the Wrist and Distal Radioulnar Joints

Published: February 4th, 2021

DOI:

10.3791/62102

1Center for Biomedical Engineering, Brown University, 2Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital

Biplanar videoradiography (BVR) is an advanced imaging technique for understanding the three-dimensional movement of skeletal bones and implants. Combining density-based image volumes and videoradiographs of the distal upper extremity, BVR is used to study the in vivo motion of the wrist and distal radioulnar joint, as well as joint arthroplasties.

Accurate measurement of skeletal kinematics in vivo is essential for understanding normal joint function, the influence of pathology, disease progression, and the effects of treatments. Measurement systems that use skin surface markers to infer skeletal motion have provided important insight into normal and pathological kinematics, however, accurate arthrokinematics cannot be attained using these systems, especially during dynamic activities. In the past two decades, biplanar videoradiography (BVR) systems have enabled many researchers to directly study the skeletal kinematics of the joints during activities of daily living. To implement BVR systems for the distal upper extremity, videoradiographs of the distal radius and the hand are acquired from two calibrated X-ray sources while a subject performs a designated task. Three-dimensional (3D) rigid-body positions are computed from the videoradiographs via a best-fit registrations of 3D model projections onto to each BVR view. The 3D models are density-based image volumes of the specific bone derived from independently acquired computed-tomography data. Utilizing graphics processor units and high-performance computing systems, this model-based tracking approach is shown to be fast and accurate in evaluating the wrist and distal radioulnar joint biomechanics. In this study, we first summarized the previous studies that have established the submillimeter and subdegree agreement of BVR with an in vitro optical motion capture system in evaluating the wrist and distal radioulnar joint kinematics. Furthermore, we used BVR to compute the center of rotation behavior of the wrist joint, to evaluate the articulation pattern of the components of the implant upon one another, and to assess the dynamic change of ulnar variance during pronosupination of the forearm. In the future, carpal bones may be captured in greater detail with the addition of flat panel X-ray detectors, more X-ray sources (i.e., multiplanar videoradiography), or advanced computer vision algorithms.

Accurate measurement of skeletal kinematics in vivo is essential for understanding healthy and replaced joint function, the influence of pathology, disease progression, and the effects of treatments. Quantifying skeletal kinematics noninvasively at the joint surface (arthrokinematics) is crucial to understand joint pathologies and diseases, such as osteoarthritis, but it is technically challenging. Previously, techniques that use skin surface markers to infer skeletal motion have provided important insight into healthy and pathological kinematics. However, accurate arthrokinematics cannot be attained using these techniques, especially during dynamic acti....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was approved by the Institutional Review Board (IRB) of Lifespan - Rhode Island Hospital, an AAHRPP accredited IRB. A total of 16 patients provided signed informed consent according to institutional guidelines.

1. Data acquisition

  1. Computed Tomography (CT)
    1. Prepare the specimens or subjects for the CT.
      NOTE: For the accuracy evaluation14,15, 6 intact forearms from four inta.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The selection of 2D-to-3D image registration software for model-based tracking depends in part on access to graphics processor unit (GPU) and high-performance computing (HPC) systems. These programs have different pipelines, and as of now, there is no common methodology among the programs. In this study, we use Autoscoper, an open-source 2D-to-3D image registration program developed at Brown University25. The choice of open-source makes it possible for the investigators to modify and automate.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Biplanar videoradiography (BVR) is an image-based method that can be used to measure bone and implant motion in the wrist and distal radioulnar joint with submillimeter and subdegree accuracy. In the studies we described here, BVR was used to identify an accurate pattern of projected COR for a healthy wrist as well as TWA contact patterns. Such findings may inform the design of next generation total wrist replacements and can provide in vivo data for validation of computational of models. Using BVR, the nonlinea.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors want to thank Josephine Kalshoven, and Lauren Parola for revising the protocol. The authors also want to thank Erika Tavares and Rohit Badida for their help throughout the data acquisition, and Kalpit Shah, Arnold-Peter Weiss, and Scott Wolfe for their help in data interpretation. This study was possible with support from the National Institutes of Health P30GM122732 (COBRE Bio-engineering Core) and a grant from the American Foundation for Surgery of the Hand (AFSH).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
3D Surface Scanner Artec 3D Artec Space SpiderTM Luxembourg
Autoscoper Brown University https://simtk.org/projects/autoscoper https://doi.org/10.1016/j.jbiomech.2019.05.040
CT Scanner General Electric (GE) Lightspeed 16 Milwaukee, WI, USA
Geomagic Wrap 3D 3DSystems Version 2017 Rock Hill, SC, USA
Graphics Processing Unit (GPU) Nvidia GeForce GTX 1080 CUDA-enabled GPU
High-speed Video Cameras Phantom Version 10 Vision Research, Wayne, NJ, USA
Image Intensifier Dunlee 40 cm diameter Aurora, IL, USA
ImageJ Open-source (Brown University) https://imagej.net/Fiji https://doi.org/10.1038/nmeth.2019
Matlab The MathWorks, Inc. R2017a to R2020a Natick, MA, USA
Mimics Materialise Version 19.0 to 22.0 Leuven, Belgium
Motion Capture Cameras Qualisys Oqus 5+  Gothenburg, Sweden
Pulsed X-ray Generators EMD Technologies EPS 45–80 Saint-Eustache, Quebec, QC, Canada
Undistortion Grid McMaster-Carr 9255T641 Steel Perforated Sheet Staggered Holes, 0.048" Thk, 0.125" Hole Dia, 36" X 40"
Wrist Implant (In-vitro Study) Integra LifeSciences Universal 2 Plainsboro, NJ, USA
Wrist Implant (In-vivo Study) Integra LifeSciences Freedom Plainsboro, NJ, USA
WristViz Open-source (Brown University) https://github.com/DavidLaidlaw/WristVisualizer/tree/master Open-source software
X-ray Tubes Varian Medical Systems Model G-1086 Palo Alto, CA, USA
XMALab Open-source (Brown University) https://www.xromm.org/xmalab/ https://doi.org/10.1242/jeb.145383

  1. Leardini, A., Chiari, L., Croce, U. D., Cappozzo, A. Human movement analysis using stereophotogrammetry: Part 3. Soft tissue artifact assessment and compensation. Gait & Posture. 21 (2), 212-225 (2005).
  2. Miranda, D. L., Rainbow, M. J., Crisco, J. J., Fleming, B. C. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. Journal of biomechanics. 46 (3), 567-573 (2013).
  3. Tashman, S., Anderst, W. In vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Journal of Biomechanical Engineering. 125 (2), 238-245 (2003).
  4. Moore, D. C., et al. Computed Tomography Image-Based Kinematic Analysis: An Overview. Handbook of Imaging in Biological Mechanics. , 115-126 (2014).
  5. Fedorov, A., et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magnetic resonance imaging. 30 (9), 1323-1341 (2012).
  6. Choi, Y. S., et al. Four-dimensional real-time cine images of wrist joint kinematics using dual source CT with minimal time increment scanning. Yonsei medical journal. 54 (4), 1026-1032 (2013).
  7. Boutin, R. D., et al. Real-Time Magnetic Resonance Imaging (MRI) during Active Wrist Motion-Initial Observations. PLoS ONE. 8 (12), 84004 (2013).
  8. Miranda, D. L., et al. Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques. Journal of Biomechanical Engineering. 133 (12), 121002-121008 (2011).
  9. Englander, Z. A., et al. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography , In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography. The American Journal of Sports Medicine. 47 (13), 3166-3172 (2019).
  10. Englander, Z. A., Garrett, W. E., Spritzer, C. E., DeFrate, L. E. In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography. Journal of Biomechanics. 98, 109443 (2020).
  11. Anderst, W. J., Les, C., Tashman, S. In vivo serial joint space measurements during dynamic loading in a canine model of osteoarthritis. Osteoarthritis and cartilage: Osteoarthritis Research Society. 13 (9), 808-816 (2005).
  12. Bey, M. J., Kline, S. K., Zauel, R., Kolowich, P. A., Lock, T. R. In Vivo Measurement of Glenohumeral Joint Contact Patterns. EURASIP journal on advances in signal processing. 2010, (2010).
  13. Anderst, W. J., Tashman, S. A method to estimate in vivo dynamic articular surface interaction. Journal of Biomechanics. 36 (9), 1291-1299 (2003).
  14. Akhbari, B., et al. Accuracy of biplane videoradiography for quantifying dynamic wrist kinematics. Journal of Biomechanics. 92, 120-125 (2019).
  15. Akhbari, B., et al. Kinematic Accuracy in Tracking Total Wrist Arthroplasty with Biplane Videoradiography using a CT-generated Model. Journal of Biomechanical Engineering. , (2019).
  16. Akhbari, B., et al. Proximal-distal shift of the center of rotation in a total wrist arthroplasty is more than twice of the healthy wrist. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 38 (7), 1575-1586 (2020).
  17. Wang, J., Blackburn, T. J. The AAPM/RSNA Physics Tutorial for Residents. RadioGraphics. 20 (5), 1471-1477 (2000).
  18. Knörlein, B. J., Baier, D. B., Gatesy, S. M., Laurence-Chasen, J. D., Brainerd, E. L. Validation of XMALab software for marker-based XROMM. The Journal of Experimental Biology. 219 (23), 3701-3711 (2016).
  19. Brainerd, E. L., et al. X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. Journal of experimental zoology. Part A, Ecological genetics and physiology. 313 (5), 262-279 (2010).
  20. X-ray Camera Calibration. XROMM / XMALab / wiki Available from: https://bitbucket.org/xromm/xmalab/wiki/X-ray%20Camera%20Calibration (2020)
  21. Akhbari, B., et al. Biomechanics of the Distal Radioulnar Joint in In vivo Forearm Pronosupination. Journal of Wrist Surgery. , (2020).
  22. Akhbari, B., et al. Predicting carpal bone kinematics using an expanded digital database of wrist carpal bone anatomy and kinematics. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. , (2019).
  23. Moore, D. C., et al. Three-dimensional in vivo kinematics of the distal radioulnar joint in malunited distal radius fractures. The Journal of Hand Surgery. 27 (2), 233-242 (2002).
  24. Knörlein, B. J. Correct for Fluoroscope Distortion (X-ray images). XROMM / XMALab / wiki. , (2020).
  25. . Autoscoper Available from: https://simtk.org/projects/autoscoper (2019)
  26. Kennedy, J., Eberhart, R. . Particle swarm optimization. , (1995).
  27. Nelder, J. A., Mead, R. A Simplex Method for Function Minimization. The Computer Journal. 7, 308 (1965).
  28. Panjabi, M. A Mathematical Approach for three-dimensional analysis of the mechanics of the spine. J Biomechanics. 4, 203-211 (1971).
  29. Marai, G. E., et al. Estimating joint contact areas and ligament lengths from bone kinematics and surfaces. IEEE transactions on bio-medical engineering. 51 (5), 790-799 (2004).
  30. Bland, J. M., Altman, D. G. Measuring agreement in method comparison studies. Statistical methods in medical research. 8 (2), 135-160 (1999).
  31. . Camera calibration With OpenCV Available from: https://docs.opencv.org/master/index.html (2020)
  32. Anderst, W. J., Lee, J. Y., Kang, J. D. In Vivo Cervical Facet Joint Capsule Deformation During Flexion-Extension. Spine. 39 (8), 514-520 (2014).
  33. Anderst, W. J., Vaidya, R., Tashman, S. A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae. The Spine Journal. 8 (6), 991-997 (2008).
  34. Mozingo, J. D., et al. Validation of imaging-based quantification of glenohumeral joint kinematics using an unmodified clinical biplane fluoroscopy system. Journal of Biomechanics. 71, 306-312 (2018).
  35. Akbari-Shandiz, M., et al. MRI vs CT-based 2D-3D auto-registration accuracy for quantifying shoulder motion using biplane video-radiography. Journal of Biomechanics. 82, 375-380 (2019).
  36. Bey, M. J., et al. In vivo shoulder function after surgical repair of a torn rotator cuff: glenohumeral joint mechanics, shoulder strength, clinical outcomes, and their interaction. The American journal of sports medicine. 39 (10), 2117-2129 (2011).
  37. Bey, M. J., Kline, S. K., Zauel, R., Kolowich, P. A., Lock, T. R. In Vivo Measurement of Glenohumeral Joint Contact Patterns. EURASIP journal on advances in signal processing. 2010, (2010).
  38. Bey, M. J., Zauel, R., Brock, S. K., Tashman, S. Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics. Journal of biomechanical engineering. 128 (4), 604-609 (2006).
  39. Fu, E., et al. Elbow Position Affects Distal Radioulnar Joint Kinematics. The Journal of Hand Surgery. 34 (7), 1261-1268 (2009).
  40. Martin, D. E., et al. Model-Based Tracking of the Hip: Implications for Novel Analyses of Hip Pathology. The Journal of Arthroplasty. 26 (1), 88-97 (2011).
  41. Miranda, D. L., et al. Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques. Journal of Biomechanical Engineering. 133 (12), 121002-121008 (2011).
  42. Stentz-Olesen, K., et al. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone & Joint Research. 6 (6), 376-384 (2017).
  43. Anderst, W., Zauel, R., Bishop, J., Demps, E., Tashman, S. Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running. Medical engineering & physics. 31 (1), 10-16 (2009).
  44. Kessler, S. E., et al. A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics. Frontiers in Bioengineering and Biotechnology. 7, 199 (2019).
  45. Maharaj, J. N., et al. The Reliability of Foot and Ankle Bone and Joint Kinematics Measured With Biplanar Videoradiography and Manual Scientific Rotoscoping. Frontiers in Bioengineering and Biotechnology. 8, 106 (2020).
  46. Ito, K., et al. Direct assessment of 3D foot bone kinematics using biplanar X-ray fluoroscopy and an automatic model registration method. Journal of Foot and Ankle Research. 8, 21 (2015).
  47. Wang, B., et al. Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics. Gait & Posture. 41 (4), 888-893 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved