A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol guides researchers and educators through implementation of the Problem-Solving before Instruction approach (PS-I) in an undergraduate statistics class. It also describes an embedded experimental evaluation of this implementation, where the efficacy of PS-I is measured in terms of learning and motivation in students with different cognitive and affective predispositions.
Nowadays, how to encourage students' reflective thinking is one of the main concerns for teachers at various educational levels. Many students have difficulties when facing tasks that involve high levels of reflection, such as on STEM (Science, Technology, Engineering and Mathematics) courses. Many also have deep-rooted anxiety and demotivation towards such courses. In order to overcome these cognitive and affective challenges, researchers have suggested the use of "Problem-Solving before Instruction" (PS-I) approaches. PS-I consists of giving students the opportunity to generate individual solutions to problems that are later solved in class. These solutions are compared with the canonical solution in the following phase of instruction, together with the presentation of the lesson content. It has been suggested that with this approach students can increase their conceptual understanding, transfer their learning to different tasks and contexts, become more aware of the gaps in their knowledge, and generate a personal construct of previous knowledge that can help maintain their motivation. Despite the advantages, this approach has been criticized, as students might spend a lot of time on aimless trial and error during the initial phase of solution generation or they may even feel frustrated in this process, which might be detrimental to future learning. More importantly, there is little research about how pre-existing student characteristics can help them to benefit (or not) from this approach. The aim of the current study is to present the design and implementation of the PS-I approach applied to statistics learning in undergraduate students, as well as a methodological approach used to evaluate its efficacy considering students' pre-existing differences.
One of the questions that teachers are most concerned about currently is how to stimulate students' reflection. This concern is common in courses of a mathematical nature, such as STEM courses (Science, Technology, Engineering and Mathematics), in which the abstraction of many concepts requires a high degree of reflection, yet many students report approaching these courses purely through memory-based methods1. In addition, students often show superficial learning of the concepts1,2,3. The difficulties that students experience applying reflection an....
This protocol follows the Helsinki Declaration of Ethical Principles for Research with Humans, but applies these principles to the added difficulties of integrating research within real-life settings in education32. Specifically, neither the assignment of learning conditions nor the decision to participate can have consequences for students' learning opportunities. In addition, confidentiality and the anonymity of students is maintained even when it is the teachers who are in charge of the evaluation. The aims, scope, and procedures of the protocol have been approved by the Research Ethics Committee of the Principality of Asturias (Spain) (....
This protocol was satisfactorily implemented in a previous study23, with the exception of the measures of students' predispositions in terms of their sense of competence, mastery approach goals, metacognition, and divergent thinking.
To address these predispositions, this protocol includes measures that have been previously validated and that have shown high levels of reliability (Table 1).
Typical solutions generated by .......
The aim of this protocol is to guide researchers and educators in the implementation and evaluation of the PS-I approach in real classroom contexts. According to some previous experiences, PS-I can help promote deep learning and motivation in students19,21,24, but there is a need for more research about its efficacy in students with different abilities and motivational predispositions14,
The authors have nothing to disclose.
This work was supported by a project of the Principality of Asturias (FC-GRUPIN-IDI/2018/000199) and a predoctoral grant from the Ministry of Education, Culture, and Sports of Spain (FPU16/05802). We would like to thank Stephanie Jun for her help editing the English in the learning materials.
....Name | Company | Catalog Number | Comments |
SPSS Program | International Business Machines Corporation (IBM) | Other programs for general data analysis might be used instead | |
PROCESS program | Andrew F. Hayes (Ohio State University) | Freely accesible at: http://www.processmacro.org. Other programs for mediation, moderation, or conditional process analyses might be used instead | |
Cognitive Competence Scale in the Survey of Attitudes towards Statistics (SATS-28) | Candace Schau (Arizona State University) | In case it is used, request should be requested from the author, who whold the copyright | |
Mastery Approach Scale in the Achievement Goal Questionnaire-Revised | Andrew J. Elliot (University of Rochester) | In case it is used, request should be requested from the author | |
Regulation of Cognition Scale of the Metacognitive Awareness Inventory | Gregory Schraw (University of Nevada Las Vegas) | In case it is used, request should be requested from the creator |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved