A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we demonstrate a method to apply fluid shear stress to cancer cells in suspension to model the effects of hemodynamic stress on circulating tumor cells.

Abstract

During metastasis, cancer cells from solid tissues, including epithelia, gain access to the lymphatic and hematogenous circulation where they are exposed to mechanical stress due to hemodynamic flow. One of these stresses that circulating tumor cells (CTCs) experience is fluid shear stress (FSS). While cancer cells may experience low levels of FSS within the tumor due to interstitial flow, CTCs are exposed, without extracellular matrix attachment, to much greater levels of FSS. Physiologically, FSS ranges over 3-4 orders of magnitude, with low levels present in lymphatics (<1 dyne/cm2) and the highest levels present briefly as cells pass through the heart and around heart valves (>500 dynes/cm2). There are a few in vitro models designed to model different ranges of physiological shear stress over various time frames. This paper describes a model to investigate the consequences of brief (millisecond) pulses of high-level FSS on cancer cell biology using a simple syringe and needle system.

Introduction

Metastasis, or the spread of cancer beyond the initial tumor site, is a major factor underlying cancer mortality1. During metastasis, cancer cells utilize the circulatory system as a highway to disseminate to distant sites throughout the body2,3. While en route to these sites, circulating tumor cells (CTCs) exist within a dynamic fluid microenvironment unlike that of their original primary tumor3,4,5. It has been proposed that this fluid microenvironment is one of many barriers to meta....

Protocol

1. Cell preparation

  1. Release cells from tissue culture dish when 70-90% confluent by following the recommended guidelines for the cell line in use.
    1. For example, aspirate the growth medium for PC-3 cells, and wash the 10 cm dish of cells with 5 mL of calcium- and magnesium-free phosphate-buffered saline (PBS).
    2. Aspirate the PBS before adding 1 mL of 0.25% trypsin using manufacturer's protocol.
    3. After observing the detachment of the cells under an inverted microscope, add 5 mL of DMEM:F12 medium containing 10% fetal bovine serum to inhibit the trypsin.
  2. Place the cell suspension into a conical tube.

Results

Elevated resistance to FSS-induced mechanical destruction has been previously shown to be a conserved phenotype across multiple cancer cell lines and cancer cells freshly isolated from tumors relative to non-transformed epithelial cell comparators15,24. Here, additional cancer cell lines from a variety of tissue origins (Table 2) were tested to demonstrate that the majority of these cells display viability ≥ 20% after 10 pulses of FSS at 25.......

Discussion

This paper demonstrates the application of FSS to cancer cells in suspension using a syringe and needle. Using this model, cancer cells have been shown to be more resistant to brief pulses of high-level FSS relative to non-transformed epithelial cells15,22,24. Furthermore, exposure to FSS using this model results in a rapid increase in cell stiffness, activation of RhoA, and increased cortical F-actin and myosin II-based contrac.......

Disclosures

MDH is a co-founder, President and shareholder of SynderBio, Inc. DLM is a consultant for SynderBio, Inc.

Acknowledgements

Development of the model demonstrated here was supported by DOD grant W81XWH-12-1-0163, NIH grants R21 CA179981 and R21 CA196202, and the Sato Metastasis Research Fund.

....

Materials

NameCompanyCatalog NumberComments
0.25% TrypsinGibco25200-056
14 mL round bottom tubesFalcon - Corning352059
30 G 1/2" NeedleBD305106
5 mL syringeBD309646
96-well black bottom plateCostar - Corning3915
Bioluminescence detectorAMIAMI HTX
BSA, Fraction VSigma10735086001
Cell Titer BluePromegaG8081
crystal violetSigmaC0775
D-luciferinGoldBioD-LUCK
DMEMGibco11965-092
FBSAtlanta BiologicalsS11150
PBSGibco10010023
Plate ReaderBioTekSynergy HT
Sodium Azide (NaN3)SigmaS2002
Syringe PumpHarvard Apparatus70-3005

References

  1. Dillekås, H., Rogers, M. S., Straume, O. Are 90% of deaths from cancer caused by metastases. Cancer medicine. 8 (12), 5574-5576 (2019).
  2. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. ....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Hemodynamic StressCirculating Tumor CellsSyringeNeedleFluid Shear StressCancer CellsMetastatic CancerCancer Cell SuspensionCell ViabilityEnzymatic Assays

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved