JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Stabilized Longitudinal In Vivo Cellular-Level Visualization of the Pancreas in a Murine Model with a Pancreatic Intravital Imaging Window

Published: May 6th, 2021



1Department of Emergency Medicine, Seoul National University Bundang Hospital, 2Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 3KI for Health Science and Technology, Korea Advanced Institute of Science and Technology

In vivo high-resolution imaging of the pancreas was facilitated with the pancreatic intravital imaging window.

Direct in vivo cellular-resolution imaging of the pancreas in a live small animal model has been technically challenging. A recent intravital imaging study, with an abdominal imaging window, enabled visualization of the cellular dynamics in abdominal organs in vivo. However, due to the soft sheet-like architecture of the mouse pancreas that can be easily influenced by physiologic movement (e.g., peristalsis and respiration), it was difficult to perform stabilized longitudinal in vivo imaging over several weeks at the cellular level to identify, track, and quantify islets or cancer cells in the mouse pancreas. Herein, we describe a method for implanting a novel supporting base, an integrated pancreatic intravital imaging window, that can spatially separate the pancreas from the bowel for longitudinal time-lapse intravital imaging of the pancreas microstructure. Longitudinal in vivo imaging with the imaging window enables stable visualization, allowing for the tracking of islets over a period of 3 weeks and high-resolution three-dimensional imaging of the microstructure, as evidenced here in an orthotopic pancreatic cancer model. With our method, further intravital imaging studies can elucidate the pathophysiology of various diseases involving the pancreas at the cellular level.

The pancreas is an abdominal organ with an exocrine function in the digestive tract and an endocrine function of secreting hormones into the bloodstream. High-resolution cellular imaging of the pancreas could reveal the pathophysiology of various diseases involving the pancreas, including pancreatitis, pancreatic cancer, and diabetes mellitus1. Conventional diagnostic imaging tools such as computed tomography, magnetic resolution imaging, and ultrasonography are widely available in the clinical field1,2. However, these imaging modalities are restricted to visualizing only structural or ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures described in this paper were conducted in accordance with the 8th edition of the Guide for the Care and Use of Laboratory Animals (2011)26 and approved by the Institutional Animal Care and Use Committee at the Korea Advanced Institute of Science and Technology (KAIST) and Seoul National University Bundang Hospital (SNUBH).

1. Preparation of the window and other materials

  1. Custom design the pancreatic intravital imaging window to secl.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Intravital microscopy combined with the supporting base integrated pancreatic intravital imaging window enables longitudinal cellular level imaging of the pancreas in a mouse. This protocol with the pancreatic intravital imaging window provides long-term tissue stability that enables the acquisition of high-resolution imaging to track individual islets for up to 3 weeks. As a result, mosaic imaging for an extended field of view, three-dimensional (3D) reconstruction of z-stack imaging, and longitudinal tracking of the sa.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol described here consists of intravital imaging of the pancreas using a novel supporting base integrated pancreatic intravital imaging window modified from an abdominal imaging window. Among the protocols described above, the first critical step is the implantation of the intravital pancreatic imaging window in the mouse. For the application of the glue in the window, it is important to apply the glue between the margin of the window and the cover glass, but not on the pancreatic tissue, as it may significantl.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by grant No. 14-2020-002 from the SNUBH Research Fund and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1058381, NRF-2020R1A2C3005694).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Alexa Fluor 647 Succinimidyl Esters (NHS esters) Invitrogen A20006 Fluorescent probe for conjugate with antibody
BALB/C Nude OrientBio BALB/C Nude BALB/C Nude
BD Intramedic polyethylene tubing BD Biosciences 427401 PE10 catheter for connection with needle
C57BL/6N OrientBio C57BL/6N C57BL/6N
Cover glasses circular Marienfeld 0111520 Cover glass for pancreatic imaging window
FITC Dextran 2MDa Merck (Former Sigma Aldrich) FD200S For vessel identification
IMARIS 8.1 Bitplane IMARIS Image processing
Intravital Microscopy IVIM tech IVM-C Intravital Microscopy
IRIS Scissor JEUNGDO BIO & PLANT CO, LTD S-1107-10 This product can be replaced with the product from other company
Loctite 401 Henkel 401 N-butyl cyanoacrylate glue
Micro Needle holder JEUNGDO BIO & PLANT CO, LTD H-1126-10 This product can be replaced with the product from other company
Micro rectractor JEUNGDO BIO & PLANT CO, LTD 17004-03 This product can be replaced with the product from other company
Microforceps JEUNGDO BIO & PLANT CO, LTD F-1034 This product can be replaced with the product from other company
MIP-GFP The Jackson Laboratory 006864 B6.Cg-Tg(Ins1-EGFP)1Hara/J
Nylon 4-0 AILEE NB434 Non-Absorbable Suture
Omnican N 100 30G B BRAUN FT9172220S For Vascular Catheter, Use only Needle part
PANC-1 NucLightRed Custom-made Custom-made Made in laboratory
Pancreatic imaging window Geumto Engineering Custom order Pancreatic imaging window - custom order
Physiosuite Kent Scientific PS-02 Homeothermic temperature controller
Purified NA/LE Rat Anti-Mouse CD31 BD Biosciences 553708 Antibody for in vivo vessel labeling
Ring Forceps JEUNGDO BIO & PLANT CO, LTD F-1090-3 This product can be replaced with the product from other company
Rompun Bayer Rompun Anesthetic agent
TMR Dextran 65-85kDa Merck (Former Sigma Aldrich) T1162 For vessel identification
Window holder Geumto Engineering Custom order Window holder - custom order
Zoletil Virbac Zoletil 100 Anesthetic agent

  1. Dimastromatteo, J., Brentnall, T., Kelly, K. A. Imaging in pancreatic disease. Nature Reviews. Gastroenterology & Hepatology. 14 (2), 97-109 (2017).
  2. Cote, G. A., Smith, J., Sherman, S., Kelly, K. Technologies for imaging the normal and diseased pancreas. Gastroenterology. 144 (6), 1262-1271 (2013).
  3. Yachida, S., et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 467 (7319), 1114-1117 (2010).
  4. Hardt, P. D., Brendel, M. D., Kloer, H. U., Bretzel, R. G. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed. Diabetes Care. 31, 165-169 (2008).
  5. Baetens, D., et al. Alteration of islet cell populations in spontaneously diabetic mice. Diabetes. 27 (1), 1-7 (1978).
  6. Holmberg, D., Ahlgren, U. Imaging the pancreas: from ex vivo to non-invasive technology. Diabetologia. 51 (12), 2148-2154 (2008).
  7. Marciniak, A., et al. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nature Protocols. 9 (12), 2809-2822 (2014).
  8. Ravier, M. A., Rutter, G. A. Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods in Molecular Biology. 633, 171-184 (2010).
  9. Frikke-Schmidt, H., Arvan, P., Seeley, R. J., Cras-Meneur, C. Improved in vivo imaging method for individual islets across the mouse pancreas reveals a heterogeneous insulin secretion response to glucose. Science Reports. 11 (1), 603 (2021).
  10. Lee, E. M., et al. Effect of resveratrol treatment on graft revascularization after islet transplantation in streptozotocin-induced diabetic mice. Islets. 10 (1), 25-39 (2018).
  11. Evgenov, N. V., Medarova, Z., Dai, G., Bonner-Weir, S., Moore, A. In vivo imaging of islet transplantation. Nature Medicine. 12 (1), 144-148 (2006).
  12. Mojibian, M., et al. Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes. Diabetologia. 56 (10), 2213-2221 (2013).
  13. Pittet, M. J., Weissleder, R. Intravital imaging. Cell. 147 (5), 983-991 (2011).
  14. Ritsma, L., et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nature Protocols. 8 (3), 583-594 (2013).
  15. Ritsma, L., et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Science Translational Medicine. 4 (158), (2012).
  16. Ritsma, L., et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature. 507 (7492), 362-365 (2014).
  17. Dolensek, J., Rupnik, M. S., Stozer, A. Structural similarities and differences between the human and the mouse pancreas. Islets. 7 (1), 1024405 (2015).
  18. Park, I., Hong, S., Hwang, Y., Kim, P. A Novel pancreatic imaging window for stabilized longitudinal in vivo observation of pancreatic islets in murine model. Diabetes & Metabolism Journal. 44 (1), 193-198 (2020).
  19. Park, I., et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. The European Respiratory Journal. 53 (3), 1800786 (2019).
  20. Park, I., et al. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model. Biomedical Optics Express. 9 (5), 2383-2393 (2018).
  21. Seo, H., Hwang, Y., Choe, K., Kim, P. In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy. Biomedical Optics Express. 6 (6), 2158-2167 (2015).
  22. Moon, J., et al. Intravital longitudinal imaging of hepatic lipid droplet accumulation in a murine model for nonalcoholic fatty liver disease. Biomedical Optics Express. 11 (9), 5132-5146 (2020).
  23. Hwang, Y., et al. In vivo cellular-level real-time pharmacokinetic imaging of free-form and liposomal indocyanine green in liver. Biomedical Optics Express. 8 (10), 4706-4716 (2017).
  24. Hara, M., et al. Transgenic mice with green fluorescent protein-labeled pancreatic beta -cells. American Journal of Physiology, Endocrinology and Metabolism. 284 (1), 177-183 (2003).
  25. Lieber, M., Mazzetta, J., Nelson-Rees, W., Kaplan, M., Todaro, G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. International Journal of Cancer. 15 (5), 741-747 (1975).
  26. National Institutes of Health. Guide for the Care and Use of Laboratory Animals. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports funded by National Institutes of Health. , (2011).
  27. Windelov, J. A., Pedersen, J., Holst, J. J. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice. Physiological Reports. 4 (11), 12824 (2016).
  28. Kim, M. P., et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols. 4 (11), 1670-1680 (2009).
  29. Cichocki, F., et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Research. 77 (20), 5664-5675 (2017).
  30. Zhu, S., et al. Monitoring C-peptide storage and secretion in islet beta-cells in vitro and in vivo. Diabetes. 65 (3), 699-709 (2016).
  31. Reissaus, C. A., et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Science Reports. 9 (1), 8449 (2019).
  32. Kong, K., Guo, M., Liu, Y., Zheng, J. Progress in animal models of pancreatic ductal adenocarcinoma. Journal of Cancer. 11 (6), 1555-1567 (2020).
  33. Bisht, S., Feldmann, G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opinion in Drug Discovery. 14 (2), 127-142 (2019).
  34. Herreros-Villanueva, M., Hijona, E., Cosme, A., Bujanda, L. Mouse models of pancreatic cancer. World Journal of Gastroenterology. 18 (12), 1286-1294 (2012).
  35. Feig, C., et al. The pancreas cancer microenvironment. Clinical Cancer Research. 18 (16), 4266-4276 (2012).
  36. Garcia, P. L., Miller, A. L., Yoon, K. J. Patient-derived xenograft models of pancreatic cancer: overview and comparison with other types of models. Cancers (Basel). 12 (5), 1327 (2020).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved