JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Optical Sectioning and Visualization of the Intervertebral Disc from Embryonic Development to Degeneration

Published: July 8th, 2021

DOI:

10.3791/62594

1Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, 2Department of Orthopedic Surgery, University Hospital of Tübingen, 3Institute for Bioinformatics and Medical Informatics, Faculty of science of the University of Tübingen, 4Medical faculty of the University of Tübingen, 5Bavarian Health and Food Safety Authority

We present a method to investigate spatial chondrocyte organization in the anulus fibrosus of the intervertebral disc using an optical sectioning method.

Intervertebral disc (IVD) degeneration is a leading cause of low back pain and it entails a high degree of impairment for the affected individuals. To decode disc degeneration and to be able to develop regenerative approaches a thorough understanding of the cellular biology of the IVD is essential. One aspect of this biology that still remains unanswered is the question of how cells are spatially arranged in a physiological state and during degeneration. The biological properties of the IVD and its availability make this tissue difficult to analyze. The present study investigates spatial chondrocyte organization in the anulus fibrosus from early embryonic development to end-stage degeneration. An optical sectioning method (Apotome) is applied to perform high resolution staining analyses using bovine embryonic tissue as an animal model and human disc tissue obtained from patients undergoing spine surgery. From a very high chondrocyte density in the early embryonic bovine disc, the number of cells decreases during gestation, growth, and maturation. In human discs, an increase in cellular density accompanied the progression of tissue degeneration. As had already been demonstrated in articular cartilage, cluster formation represents a characteristic feature of advanced disc degeneration.

The intervertebral disc (IVD) is a cartilage-based structure that biochemically and with respect to cellular architecture, at first sight, resembles in many ways the articular cartilage1. Indeed, both IVD degeneration and osteoarthritis (OA) of articular cartilage are characterized by joint space narrowing due to cartilage wear, subchondral cyst and osteophyte formation, and subchondral sclerosis2,3. Despite these seeming similarities architecture and functional role of both tissues differ. While the matrix of articular cartilage is mainly formed of an arcade-forming collagen type II ne....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

For the analysis of embryonic development and maturation, bovine discs were used. To evaluate degeneration of the IVD, human samples were analyzed.

Human IVD tissue was obtained from patients undergoing surgery for lumbar disc degeneration, disc prolapse, or spinal trauma in the Department of Orthopaedic Surgery, University Hospital of Tübingen and the BG Trauma Centre Tübingen. Full ethical committee approval was obtained before the commencement of the study (project number 244/2013.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using mosaic images, the architecture of the IVD with its dense collagen fiber network in the anulus and the softer nucleus can clearly be recognized (Figure 4). A continuous decrease in cellular density can be observed during embryonic development (Figure 5). While in the early stages of IVD development a cell density of 11,435 cells/mm² in the bovine anulus fibrosus and 17,426 cells/mm² in the bovine nucleus pulposus can be found, these numbers decre.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using fluorescence microscopy augmented by mosaic imaging and optical sectioning, we evaluated the spatial arrangement of chondrocytes in the anulus of the lumbar IVD throughout development, maturation, and degeneration. While degenerative tissue could be harvested from patients receiving spine surgery for disc degeneration, analysis of the embryonic period and maturation phase required the use of a model organism (bovine). High cellular densities were noted in the anulus during early embryonic development. In the furthe.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank our co-authors from the original publications for their help and support. We thank Charlotte Emma Bamberger for helping to acquire the apotome images.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Amphotericin B Merck KGaA,  Germany A2942
Adhesion Microscope Slides SuperFrost Plus R. Langenbrinck, Germany 03-0060
ApoTome Carl Zeiss MicroImaging GmbH, Germany 462000115
AxioVision Rel. 4.8 with Modul MosaiX Carl Zeiss MicroImaging GmbH, Germany
CellMask Actin Tracking Stain Thermo Fischer Scientific, US A57249
Cryostat Leica Biosystems, US CM3050S
DAPI Thermo Fischer Scientific, US D1306
Dulbecco's modified Eagle's medium (DMEM) Gibco, Life Technologies, Germany 41966052
Ethylenediaminetetraacetic acid Sigma-Aldrich, US 60004
Fluorescence Miscoscope - Axio Observer Z1 with Axio Cam MR3 and Colibri Carl Zeiss MicroImaging GmbH, Germany 3834000604
Formaldehyde Merck KGaA,  Germany 104002
Image J 1.53a, with Cell counter plugin National Insittute of Health (NIH), US
Invitrogen Alexa Fluor 568 Phalloidin Thermo Fischer Scientific, US A12380
Microscopic Cover Glasses R. Langenbrinck, Germany 01-1818/1
PAP Pen Liquid Blocker Science Sevices  GmbH, Germany N71310
Penicillin-Streptomycin Sigma-Aldrich, US P4333
Phosphate buffered saline Sigma-Aldrich,US P5119
Scalpel pf medical AG, Germany 2023-01
Tissue-tek O.C.T. Compound Sakura Finetek, Netherlands SA6255012

  1. Urban, J. P. G., Roberts, S. Degeneration of the intervertebral disc. Arthritis Research and Therapy. 5 (3), 120-130 (2003).
  2. Gupta, K. B., Duryea, J., Weissman, B. N. Radiographic evaluation of osteoarthritis. Radiologic Clinics of North America. 42 (1), 11-41 (2004).
  3. Pye, S. R., et al. Lumbar disc degeneration: association between osteophytes, end-plate sclerosis and disc space narrowing. Annals of the Rheumatic Diseases. 66 (3), 330-333 (2007).
  4. Humzah, M. D., Soames, R. W. Human intervertebral disc: structure and function. The Anatomical Record. 220 (4), 337-356 (1988).
  5. Schumacher, B. L., Su, J. L., Lindley, K. M., Kuettner, K. E., Cole, A. A. Horizontally oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. The Anatomical Record. 266 (4), 241-248 (2002).
  6. Rolauffs, B., Williams, J. M., Grodzinsky, A. J., Kuettner, K. E., Cole, A. A. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints. Journal of Structural Biology. 162 (2), 335-344 (2008).
  7. Felka, T., et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis and Cartilage. 24 (7), 1200-1209 (2016).
  8. Rolauffs, B., et al. Onset of preclinical osteoarthritis: the angular spatial organization permits early diagnosis. Arthritis and Rheumatism. 63 (6), 1637-1647 (2011).
  9. Aicher, W. K., Rolauffs, B. The spatial organization of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis. Annals of the Rheumatic Diseases. 73 (4), 645-653 (2014).
  10. Danalache, M., Jacobi, L. F., Schwitalle, M., Hofmann, U. K. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis. Journal of Biomechanics. 97, 109409 (2019).
  11. Danalache, M., et al. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organization in osteoarthritic cartilage. Osteoarthritis and Cartilage. 27 (5), 823-832 (2019).
  12. Tschaikowsky, M., et al. Proof-of-concept for the detection of early osteoarthritis pathology by clinically applicable endomicroscopy and quantitative AI-supported optical biopsy. Osteoarthritis and Cartilage. 29 (2), 269-279 (2021).
  13. Ciapetti, G., et al. Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society and the European Section of the Cervical Spine Research Society. 21, 10 (2012).
  14. Johnson, W. E., Eisenstein, S. M., Roberts, S. Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connective Tissue Research. 42 (3), 197-207 (2001).
  15. Buttermann, G. R., Beaubien, B. P., Saeger, L. C. Mature runt cow lumbar intradiscal pressures and motion segment biomechanics. The Spine Journal: Official Journal of the North American Spine Society. 9 (2), 105-114 (2009).
  16. Wilke, H. J., Neef, P., Caimi, M., Hoogland, T., Claes, L. E. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 24 (8), 755-762 (1999).
  17. Demers, C. N., Antoniou, J., Mwale, F. Value and limitations of using the bovine tail as a model for the human lumbar spine. Spine. 29 (24), 2793-2799 (2004).
  18. Hofmann, U. K., et al. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. Journal of Tissue Engineering and Regenerative Medicine. 12 (9), 2000-2010 (2018).
  19. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 26 (17), 1873-1878 (2001).
  20. Habermehl, K. H. . Die Altersbestimmung bei Haus- und Labortieren. , (1975).
  21. Danalache, M., Erler, A. L., Wolfgart, J. M., Schwitalle, M., Hofmann, U. K. Biochemical changes of the pericellular matrix and spatial chondrocyte organization-Two highly interconnected hallmarks of osteoarthritis. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 38 (10), 2170-2180 (2020).
  22. Bonnaire, F. C., et al. The intervertebral disc from embryonic development to disc degeneration: insights into spatial cellular organization. The Spine Journal: Official Journal of the North American Spine Society. (21), 00198 (2021).
  23. Vieira-Neto, A., Galvao, K. N., Thatcher, W. W., Santos, J. E. P. Association among gestation length and health, production, and reproduction in Holstein cows and implications for their offspring. Journal of Dairy Science. 100 (4), 3166-3181 (2017).
  24. Ott, A. Die Entwicklung des schwarzbunten Niederungsrindes von der Geburt bis zum 5. Lebensjahr mit variationsstatistischen Untersuchungen einer Population solcher Rinder von der Geburt bis zum 3. Lebensjahr. Zeitschrift für Tierzüchtung und Züchtungsbiologie. 45 (3), 259-308 (1940).
  25. Urban, J. P. G., Roberts, S., Ralphs, J. R. The Nucleus of the Intervertebral Disc from Development to Degeneration1. American Zoologist. 40 (1), 53-61 (2000).
  26. Risbud, M. V., Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews. Rheumatology. 10 (1), 44-56 (2014).
  27. Iatridis, J. C., Michalek, A. J., Purmessur, D., Korecki, C. L. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell and Molecular Bioengineering. 2 (3), 437-447 (2009).
  28. Torre, O. M., Mroz, V., Bartelstein, M. K., Huang, A. H., Iatridis, J. C. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Annals of the New York Academy of Sciences. 1442 (1), 61-78 (2019).
  29. Rolauffs, B., et al. Proliferative remodeling of the spatial organization of human superficial chondrocytes distant from focal early osteoarthritis. Arthritis and Rheumatism. 62 (2), 489-498 (2010).
  30. Johnson, W. E., Roberts, S. Rumours of my death may have been greatly exaggerated': a brief review of cell death in human intervertebral disc disease and implications for cell transplantation therapy. Biochemical Society Transactions. 35, 680-682 (2007).
  31. Roberts, S. Disc morphology in health and disease. Biochemical Society Transactions. 30, 864-869 (2002).
  32. Lama, P., Kulkarni, J., Tamang, B. The role of cell clusters in intervertebral disc degeneration and its relevance behind repair. Spine Research. 03, 15 (2017).
  33. Sharp, C. A., Roberts, S., Evans, H., Brown, S. J. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society and the European Section of the Cervical Spine Research Society. 18 (11), 1587-1594 (2009).
  34. Freemont, A. J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 48 (1), 5-10 (2009).
  35. Müllers, Y., et al. Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation. PLoS One. 14 (1), 0211382 (2019).
  36. McCann, M. R., Séguin, C. A. Notochord cells in intervertebral disc development and degeneration. Journal of Developmental Biology. 4 (1), 3 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved