A subscription to JoVE is required to view this content. Sign in or start your free trial.
The study describes a protocol for creating large (µg-mg) quantities of DNA for protein screening campaigns from synthetic gene fragments without cloning or using living cells. The minimal template is enzymatically digested and circularized and then amplified using isothermal rolling circle amplification. Cell-free expression reactions could be performed with the unpurified product.
This protocol describes the design of a minimal DNA template and the steps for enzymatic amplification, enabling rapid prototyping of assayable proteins in less than 24 h using cell-free expression. After receiving DNA from a vendor, the gene fragment is PCR-amplified, cut, circularized, and cryo-banked. A small amount of the banked DNA is then diluted and amplified significantly (up to 106x) using isothermal rolling circle amplification (RCA). RCA can yield microgram quantities of the minimal expression template from picogram levels of starting material (mg levels if all starting synthetic fragment is used). In this work, a starting amount of 20 pg resulted in 4 µg of the final product. The resulting RCA product (concatemer of the minimal template) can be added directly to a cell-free reaction with no purification steps. Due to this method being entirely PCR-based, it may enable future high-throughput screening efforts when coupled with automated liquid handling systems.
Cell-free gene expression (CFE) has emerged as a powerful tool with many applications. Such applications include disease detection1,2,3,4,5,6, micronutrient and small molecule detection7,8,9,10,11,12, biomanufacturing13,14
1. Designing the gene fragment
NOTE: The gene fragment should have all the necessary genetic elements for transcription/translation, including promoter, ribosome binding site (RBS), start codon, the gene of interest, and terminator. While the terminator is not necessary for a linear expression template (LET), it will be important if the user decides to insert the sequence into a plasmid. These sequences were lifted from the pJL1-sfGFP plasmid55 (gift from Michael Jewett&#.......
Expression of sfGFP from RCA templates was comparable to that of the pJL1 plasmid when using only 0.30 µL of unpurified RCA DNA in a 15 µL reaction (Figure 2A). In fact, doubling and tripling the amount of template appears to offer no benefit in BL21 DE3 Star extract, suggesting already saturated levels of the template at 0.30 µL per reaction. Conversely, there appears to be a benefit to increasing the amount of RCA template when added to cell extract sourced from the SHuffle .......
The gene of interest can be any desired protein, but it is best to start with a fluorescent protein as a convenient reporter for real-time or end-point readout on a well plate reader for new adopters of this method. For new protein sequences, copy the amino acid sequence of the desired protein and paste it into the desired codon optimization tool61,62. There are usually many available organisms and strains of E. coli in the codon optimization tool, but c.......
The authors acknowledge NIH 1R35GM138265-01 and NSF 2029532 for partial support of this project.
....Name | Company | Catalog Number | Comments |
Alaline | Formedium | DOC0102 | |
Ammonium glutamate | MP Biomedicals | MP21805951 | |
Arginine | Formedium | DOC0106 | |
Asparagine | Formedium | DOC0114 | |
Aspartic Acid | Formedium | DOC0118 | |
ATP | Sigma | A2383 | |
Axygen Sealing Film | Corning | PCR-SP | |
CMP | Sigma | C1006 | |
Coenzyme A | Sigma | C3144 | |
CutSmart Buffer | NEB | B7204S | Provided with HindIII |
Cysteine | Formedium | DOC0122 | |
DNA Clean and Concentrator Kit | Zymo Research | D4004 | Used for purifying DNA |
dNTPs | NEB | N0447 | |
E. coli tRNA | Sigma (Roche) | 10109541001 | |
Folinic Acid | Sigma | 47612 | |
Gene Fragment | IDT | ||
Glutamic Acid | Formedium | DOC0134 | |
Glutamine | Formedium | DOC0130 | |
Glycine | Formedium | DOC0138 | |
GMP | Sigma | G8377 | |
HEPES | Sigma | H3375 | |
HindIII-HF | NEB | R3104L | |
Histidine | Formedium | DOC0142 | |
Isoleucine | Formedium | DOC0150 | |
Leucine | Formedium | DOC0154 | |
Lysine | Formedium | DOC0158 | |
Magnesium glutamate | Sigma | 49605 | |
Methionine | Formedium | DOC0166 | |
Microtiter Plate (384 well) | Greiner | 781906 | |
Microtiter Plate (96 well) | Greiner | 655809 | |
Multimode Plate Reader | BioTek | Synergy Neo2 | |
NAD | Sigma | N8535 | |
NanoPhotometer | Implen | NP80 | |
OneTaq DNA Polymerase | NEB | M0480 | |
PCR Tube | VWR | 20170-012 | |
Phenylalanine | Formedium | DOC0170 | |
Phosphoenolpyruvate | Sigma (Roche) | 10108294 | |
Potassium glutamate | Sigma | G1501 | |
Potassium oxalate | Fisher Scientific | P273 | |
Proline | Formedium | DOC0174 | |
Putrescine | Sigma | P5780 | |
Serine | Formedium | DOC0178 | |
Spermidine | Sigma | S0266 | |
T4 DNA Ligase | NEB | M0202S | |
T4 DNA Ligase Reaction Buffer | NEB | B0202S | Provided with T4 DNA Ligase |
TempliPhi Amplification Kit | Cytiva | 25640010 | Used for RCA |
Thermal Cycler | Biorad | C1000 Touch | |
Thermoblock | Eppendorf | ThermoMixer FP | |
Threonine | Formedium | DOC0182 | |
Tryptophan | Formedium | DOC0186 | |
Tyrosine | Formedium | DOC0190 | |
UMP | Sigma | U6375 | |
Valine | Formedium | DOC0194 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved