Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes an improved methodology for ADSC isolation resulting in a tremendous cellular yield with time gain compared to the literature. This study also provides a straightforward method for obtaining a relatively large number of viable cells after long-term cryopreservation.

Abstract

Human mesenchymal stem cells derived from adipose tissue have become increasingly attractive as they show appropriate features and are an accessible source for regenerative clinical applications. Different protocols have been used to obtain adipose-derived stem cells. This article describes different steps of an improved time-saving protocol to obtain a more significant amount of ADSC, showing how to cryopreserve and thaw ADSC to obtain viable cells for culture expansion. One hundred milliliters of lipoaspirate were collected, using a 26 cm three-hole and 3 mm caliber syringe liposuction, from the abdominal area of nine patients who subsequently underwent elective abdominoplasty. The stem cells isolation was carried out with a series of washes with Dulbecco's Phosphate Buffered Saline (DPBS) solution supplemented with calcium and the use of collagenase. Stromal Vascular Fraction (SVF) cells were cryopreserved, and their viability was checked by immunophenotyping. The SVF cellular yield was 15.7 x 105 cells/mL, ranging between 6.1-26.2 cells/mL. Adherent SVF cells reached confluence after an average of 7.5 (±4.5) days, with an average cellular yield of 12.3 (± 5.7) x 105 cells/mL. The viability of thawed SVF after 8 months, 1 year, and 2 years ranged between 23.06%-72.34% with an average of 47.7% (±24.64) with the lowest viability correlating with cases of two-year freezing. The use of DPBS solution supplemented with calcium and bag resting times for fat precipitation with a shorter time of collagenase digestion resulted in an increased stem cell final cellular yield. The detailed procedure for obtaining high yields of viable stem cells was more efficient regarding time and cellular yield than the techniques from previous studies. Even after a long period of cryopreservation, viable ADSC cells were found in the SVF.

Introduction

Human mesenchymal stem cells are advantageous in both basic and applied research. The use of this adult cell type overpasses ethical issues-compared to the use of embryonic or other cells-being one of the most promising areas of study in autologous tissue regeneration engineering and cell therapy1, such as the neoplastic area, the treatment of degenerative diseases, and therapeutic applications in the reconstructive surgery area2,3,4,5. It has been previously reported that there is an abundant source of mesenchymal mu....

Protocol

The present study is approved by the Ethics Committee of the UNIFESP (protocol number: 0029/2015 CAAE: 40846215.0.0000.5505), performed after obtaining written informed consent from the patients according to the Declaration of Helsinki (2004). The sample of the present study is composed of nine female patients, aged 33-50 years (average age 41.5) and average initial body mass index (BMI) of 24.54 (ranging between 22.32-26.77) (Table 1) who underwent aesthetic abdominoplasty due to excess of skin after pr.......

Representative Results

The characterization of the nine individuals studied, including their age, weight, height, and BMI, are shown in Table 1.

According to the cellular yield initially presented, the cell volume inoculated in culture was calculated to be as close as possible to the capacity of the 75 cm2 culture flask. The sample volume seeded in each case is described in Table 2. Then, according to the initial cellular yield, a variable volume of cells for each sample .......

Discussion

Isolation yield
It is well established that the cryopreservation process, frequently required in cellular therapy, results in significant cell loss, sometimes greater than 50%29,30,35. Thus, a technical improvement for obtaining high initial cellular yield in isolation is fundamental. The collecting method of lipoaspirate and the isolation method of the cells must focus on preserving a greater number of ce.......

Acknowledgements

We thank the patients who volunteered to participate and the medical and nursing staff of the Hospital São Paulo. This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

....

Materials

NameCompanyCatalog NumberComments
1.8 mL cryovialsNunc Thermo Fisher Scientific340711
150 mL polyvinyl chloride transfer bagJP FARMA80146150059
2% Alizarin Red S Solution, pH 4.2Sigma AldrichA5533
Adrenaline (1 mg/mL)HipolaborNA
Alcian Blue solutionSigma Aldrich1,01,647
Antibiotic-Antimycotic 100xGibco15240062
BD FACSCalibur Flow Cytometer using BD CellQues Pro AnalysisBD BioSciencesNA
Calcium chloride 10%Merck102379
Chlorhexidine gluconate 4%VIC PHARMANA
Collagenase, Type I, powderGibco17018029
DMEM (Dulbecco's modified Eagle's medium)Gibco11966025
DPBS no calcium, no magnesium (Dulbecco's Phosphate Buffered Saline Gibco Cell Therapy Systems)GibcoA1285801
DPBS with calcium (Dulbecco's Phosphate Buffered Saline Gibco Cell Therapy Systems)GibcoA1285601
Fetal bovine serumGibco10500056
Formaldehyde 4%Sigma Aldrich1,00,496
Inverted light microscopeNikon Eclipse TS100NA
Live and Dead Cell AssayThermofisher01-3333-41 | 01-3333-42
Monoclonal antibody: CD105BD BioSciences745927
Monoclonal antibody: CD11BBD BioSciences746004
Monoclonal antibody: CD19BD BioSciences745907
Monoclonal antibody: CD34BD BioSciences747822
Monoclonal antibody: CD45DAKOM0701
Monoclonal antibody: CD73BD BioSciences746000
Monoclonal antibody: CD90BD BioSciences553011
Monoclonal antibody: HLA-DRBD BioSciences340827
Mr. Frosty Freezing ContainerThermo Fisher Scientific5100-0001
PBS (phosphate buffered saline) 1x pH 7.4Gibco 10010023
StemPro Adipogenesis Differentiation KitGibcoA1007001
StemPro Chondrogenesis Differentiation KitGibcoA1007101
StemPro Osteogenesis Differentiation KitGibcoA1007201
Sterile connector with one spike with needle injection siteOrigen Biomedical Connector, USANACode mark: IBS
Trypan blue solution 0.4%Sigma Aldrich93595
Trypsin-EDTA 0.25% 1x, phenol redGibco25200056

References

  1. Frese, L., Dijkman, P. E., Hoerstrup, S. P. Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicina and Hemotherapy. 43 (4), 268-274 (2016).
  2. Alperovich, M., et al. Adipose stem cell therapy in cancer....

Explore More Articles

Mesenchymal Stem CellsAdipose TissueStromal Vascular FractionCryopreservationCell IsolationCell CharacterizationCell ViabilityCell CountingCell SuspensionCryoprotective MediumFreezing ProtocolLong term Storage

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved