JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

Generating Self-Assembling Human Heart Organoids Derived from Pluripotent Stem Cells

Published: September 15th, 2021

DOI:

10.3791/63097

1Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, 2Department of Biomedical Engineering, College of Engineering, Michigan State University

Here, we describe a protocol to create developmentally relevant human heart organoids (hHOs) efficiently using human pluripotent stem cells by self-organization. The protocol relies on the sequential activation of developmental cues and produces highly complex, functionally relevant human heart tissues.

The ability to study human cardiac development in health and disease is highly limited by the capacity to model the complexity of the human heart in vitro. Developing more efficient organ-like platforms that can model complex in vivo phenotypes, such as organoids and organs-on-a-chip, will enhance the ability to study human heart development and disease. This paper describes a protocol to generate highly complex human heart organoids (hHOs) by self-organization using human pluripotent stem cells and stepwise developmental pathway activation using small molecule inhibitors. Embryoid bodies (EBs) are generated in a 96-well plate with round-bottom, ultra-low attachment wells, facilitating suspension culture of individualized constructs.

The EBs undergo differentiation into hHOs by a three-step Wnt signaling modulation strategy, which involves an initial Wnt pathway activation to induce cardiac mesoderm fate, a second step of Wnt inhibition to create definitive cardiac lineages, and a third Wnt activation step to induce proepicardial organ tissues. These steps, carried out in a 96-well format, are highly efficient, reproducible, and produce large amounts of organoids per run. Analysis by immunofluorescence imaging from day 3 to day 11 of differentiation reveals first and second heart field specifications and highly complex tissues inside hHOs at day 15, including myocardial tissue with regions of atrial and ventricular cardiomyocytes, as well as internal chambers lined with endocardial tissue. The organoids also exhibit an intricate vascular network throughout the structure and an external lining of epicardial tissue. From a functional standpoint, hHOs beat robustly and present normal calcium activity as determined by Fluo-4 live imaging. Overall, this protocol constitutes a solid platform for in vitro studies in human organ-like cardiac tissues.

Congenital heart defects (CHDs) are the most common type of congenital defect in humans and affect approximately 1% of all live births1,2,3. Under most circumstances, the reasons for CHDs remain unknown. The ability to create human heart models in the lab that closely resemble the developing human heart constitutes a significant step forward to directly study the underlying causes of CHDs in humans rather than in surrogate animal models.

The epitome of laboratory-grown tissue models are organoids, 3D cell constructs that resemble an organ of intere....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. hPSC culture and maintenance

NOTE: The human induced PSCs (hiPSCs) or human embryonic stem cells (hESCs) need to be cultured for at least 2 consecutive passages after thawing before being used to generate EBs for differentiation or further cryopreservation. hPSCs are cultured in PSC medium (see the Table of Materials) on basement-membrane-extracellular matrix (BM-ECM)-coated 6-well culture plates. When performing medium changes on hPSCs in 6-well plates, add the medium direct.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To achieve self-organizing hHO in vitro, we modified and combined differentiation protocols previously described for 2D monolayer differentiation of cardiomyocytes21 and epicardial cells22 using Wnt pathway modulators and for 3D precardiac organoids16 using the growth factors BMP4 and Activin A. Using the 96-well plate EB and hHO differentiation protocol described here and shown in Figure 1, the concentrations a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Recent advances in human stem cell-derived cardiomyocytes and other cells of cardiac origin have been used to model human heart development22,24,25 and disease26,27,28 and as tools to screen therapeutics29,30 and toxic agents31,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award numbers K01HL135464 and R01HL151505 and by the American Heart Association under award number 19IPLOI34660342. We wish to thank the MSU Advanced Microscopy Core and Dr. William Jackson at the MSU Department of Pharmacology and Toxicology for access to confocal microscopes, the IQ Microscopy Core, and the MSU Genomics Core for sequencing services. We also wish to thank all members of the Aguirre Lab for their valuable comments and advice.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Antibodies
Alexa Fluor 488 Donkey anti- mouseInvitrogenA-212021:200
Alexa Fluor 488 Donkey anti- rabbitInvitrogenA-212061:200
Alexa Fluor 594 Donkey anti- mouseInvitrogenA-212031:200
Alexa Fluor 594 Donkey anti- rabbitInvitrogenA-212071:200
Alexa Fluor 647 Donkey anti- goatInvitrogenA328491:200
HAND1Abcamab196622Rabbit; 1:200
HAND2Abcamab200040Rabbit; 1:200
NFAT2Abcamab25916Rabbit; 1:100
PECAM1DSHBP2B1Rabbit; 1:50
TNNT2Abcamab8295Mouse; 1:200
THY1Abcamab133350Rabbit; 1:200
TJP1InvitrogenPA5-19090Goat; 1:250
VIMAbcamab11256Goat; 1:250
WT1Abcamab89901Rabbit; 1:200
Media and Reagents
AccutaseInnovative Cell TechnologiesNC9464543cell dissociation reagent
Activin AR&D Systems338AC010
B-27 Supplement (Minus Insulin)GibcoA1895601insulin-free cell culture supplement
B-27 SupplementGibco17504-044cell culture supplement
BMP-4GibcoPHC9534
Bovine Serum AlbuminBioworld50253966
CHIR-99021Selleck442310
D-(-)-FructoseMillipore SigmaF0127
DAPIThermo Scientific622481:1000
Dimethyl SulfoxideMillipore SigmaD2650
DMEM/F12Gibco10566016
Essential 8 Flex Medium KitGibcoA2858501pluripotent stem cell (PSC) medium containing 1% penicillin-streptomycin
Fluo4-AMInvitrogenF14201
GlycerolMillipore SigmaG5516
GlycineMillipore Sigma410225
Matrigel GFRCorningCB40230Basement membrane extracellular matrix (BM-ECM)
Normal Donkey SerumMillipore SigmaS30-100mL
ParaformaldehydeMP BiomedicalsIC15014601Powder dissolved in PBS Buffer – use at 4%
Penicillin-StreptomycinGibco15140122
Phosphate Buffer SolutionGibco10010049
Phosphate Buffer Solution (10x)Gibco70011044
Polybead MicrospheresPolysciences, Inc.7315590 µm
ReLeSRStem Cell TechnologiesNC0729236dissociation reagent for hPSCs
RPMI 1640Gibco11875093
ThiazovivinMillipore SigmaSML1045
Triton X-100Millipore SigmaT8787
Trypan Blue SolutionGibco1525006
VECTASHIELD Vibrance Antifade Mounting MediumVector LaboratoriesH170010
WNT-C59SelleckNC0710557
Other
1.5 mL Microcentrifuge TubesFisher Scientific02682002
15 mL Falcon TubesFisher Scientific1495970C
2 mL Cryogenic VialsCorning13-700-500
50 mL Reagent ReservoirsFisherbrand13681502
6-Well Flat Bottom Cell Culture PlatesCorning0720083
8 Well chambered cover Glass with #1.5 high performance cover glassCellvisC8-1.5H-N
96-well Clear Ultra Low Attachment MicroplatesCostar07201680
ImageJNIHImage processing software
KimwipesKimberly-Clark Professional06-666laboratory wipes
Micro Cover GlassVWR48393-24124 x 50 mm No. 1.5
Microscope SlidesFisherbrand1255015
Moxi Cell CounterOrflo Technologies MXZ001
Moxi Z Cell Count Cassette – Type MOrflo TechnologiesMXC001
Multichannel PipettesFisherbrandFBE120030030-300 µL
Olympus cellVivoOlympusFor Caclium Imaging, analysis with Imagej
Sorvall Legend X1 CentrifugeThermoFisher Scientific75004261
ThermoshakerThermoFisher Scientific13-687-711PM
Top Coat Nail VarishSeche ViteCan purchase from any supermarket

  1. Hoffman, J. I. E., Kaplan, S. The incidence of congenital heart disease. Journal of the American College of Cardiology. 39 (12), 1890-1900 (2002).
  2. Wu, W., He, J., Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine. 99 (23), 20593 (2020).
  3. Fahed, A. C., Gelb, B. D., Seidman, J. G., Seidman, C. E. Genetics of congenital heart disease: the glass half empty. Circulation Research. 112 (4), 707-720 (2013).
  4. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  5. Mansour, A. A., et al. An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology. 36, 432-441 (2018).
  6. Homan, K. A., et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods. 16 (3), 255-262 (2019).
  7. Uchimura, K., Wu, H., Yoshimura, Y., Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Reports. 33 (11), 108514 (2020).
  8. Serra, D., et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 569, 66-72 (2019).
  9. Mithal, A., et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nature Communications. 11, 215 (2020).
  10. Porotto, M., et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio. 10 (3), 00723 (2019).
  11. Dye, B. R., et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 4, 05098 (2015).
  12. Mun, S. J., et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology. 71 (5), 970-985 (2019).
  13. Vyas, D., et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology. 67 (2), 750-761 (2018).
  14. Dossena, M., et al. Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Research & Therapy. 11, 94 (2020).
  15. Georgakopoulos, N., et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Developmental Biology. 20 (1), 4 (2020).
  16. Andersen, P., et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nature Communications. 9, 3140 (2018).
  17. Rossi, G., et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell. 28 (2), 230-240 (2021).
  18. Lee, J., et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications. 11 (1), 4283 (2020).
  19. Drakhlis, L., et al. Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology. 39 (6), 737-746 (2021).
  20. Hofbauer, P., et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 184 (12), 3299-3317 (2021).
  21. Bao, X., et al. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nature Protocols. 12 (9), 1890-1900 (2017).
  22. Bao, X., et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering. 1, 0003 (2016).
  23. Lewis-Israeli, Y., et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications. 12, 5142 (2021).
  24. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), 1848-1857 (2012).
  25. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  26. Hashem, S. I., et al. Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology. 108, 86-94 (2017).
  27. Sun, N., et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine. 4 (130), (2012).
  28. Stroud, M. J., et al. Luma is not essential for murine cardiac development and function. Cardiovascular Research. 114 (3), 378-388 (2018).
  29. Liang, P., et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 127 (16), 1677-1691 (2013).
  30. Mills, R. J., et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America. 114 (40), 8372-8381 (2017).
  31. Braam, S. R., et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research. 4 (2), 107-116 (2010).
  32. Burridge, P. W., et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine. 22 (5), 547-556 (2016).
  33. Pinto, A. R., et al. Revisiting cardiac cellular composition. Circulation Research. 118 (3), 400-409 (2017).
  34. Bertero, A., et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications. 10 (1), 1538 (2019).
  35. Gilbert, S. F. Lateral plate mesoderm: Heart and Circulatory System. Developmental Biology. 6th edition. , 591-610 (2000).
  36. Richards, D. J., et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature Biomedical Engineering. 4 (4), 446-462 (2020).
  37. Lewis-Israeli, Y. R., Wasserman, A. H. Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules. 1277, (2021).

Tags

Self assembling

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved