A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present an economical and efficient method to isolate and generate high-purity bone marrow-derived dendritic cells from mice after 7 days of culture with 10 ng/mL GM-CSF/IL-4.
The demand for dendritic cells (DCs) is gradually increasing as immunology research advances. However, DCs are rare in all tissues. The traditional method for isolating DCs primarily involves inducing bone marrow (BM) differentiation into DCs by injecting large doses (>10 ng/mL) of granulocyte-macrophage colony-stimulating factor/interleukin-4 (GM-CSF/IL-4), making the procedure complex and expensive. In this protocol, using all BM cells cultured in 10 ng/mL GM-CSF/IL-4 medium, after 3-4 half-culture exchanges, up to 2.7 x 107 CD11c+ cells (DCs) per mouse (two femurs) were harvested with a purity of 80%-95%. After 10 days in culture, the expression of CD11c, CD80, and MHC II increased, whereas the number of cells decreased. The number of cells peaked after 7 days of culture. Moreover, this method only took 10 min to harvest all bone marrow cells, and a high number of DCs were obtained after 1 week of culture.
Dendritic cells (DCs) are the most powerful antigen-presenting cells (APCs) for activating naïve T cells and inducing specific cytotoxic T lymphocyte (CTL) responses against infectious diseases, allergy diseases, and tumor cells1,2,3. DCs are the primary link between innate immunity and adaptive immunity and play an essential role in immunological defense and the maintenance of immune tolerance. In the last 40 years, many researchers have sought to define the subsets of DCs and their functions in inflammation and immunity. As per those studies, DCs develop along the myeloid and lymphoid lineages from bone marrow cells. Tumor vaccines have gained significant milestones in recent years and have a promising future. Mechanically, tumor vaccines modulate the immune response and prevent tumor growth by activating cytotoxic T lymphocytes using tumor antigens. The vaccine based on DCs plays an important role in tumor immunotherapy and has been identified as one of the most promising anti-tumor therapies1,4. In addition, DCs have been widely used in the testing of new molecular-targeted drugs and immune checkpoint inhibitors5.
Researchers urgently need a high number of high-purity DCs to further study the role of DCs. However, DCs are rare in various tissues and blood, accounting for only 1% of blood cells in humans and animals. In vitro culture of bone marrow dendritic cells (BMDC) is an important method for obtaining large amounts of DC cells. Meanwhile, The Lutz protocol for generating DCs from bone marrow has been widely used by researchers6. Although the protocol is effective in obtaining DC cells, it is complex and expensive, involving the addition of high concentrations of cytokines and the lysis of red blood cells.
In this study, we report a method for isolating almost all bone marrow cells from mouse bone marrow (BM) and inducing differentiation into BMDC after 7-9 days of incubation in vitro, with a lower concentration of GM-CSF and IL-4. This procedure only takes 10 min to harvest almost all bone marrow cells and to suspend them in a complete medium. In brief, we provide an efficient and cost-effective culturing method for BMDC in this research.
All procedures were approved by the Nanjing Medical University Animal Care and Use Committee.
1. Isolation of bone marrow and preparation of BM cells
2. Induction culture of BMDC
3. Flow cytometric detection of the expression of CD11c, CD80, and MHC II
The 1 x 107-1.7 x 107 cells were extracted from two femurs and were re-suspended in 24 mL of medium before being planted in a 6-well plate (Figure 1A). After 2 days, non-adherent cells were removed by completely changing the culture medium. Before changing the medium, a significant number of suspended cells were observed (Figure 1B). After 3 days of culture, small cell colonies began to form. On the sixth day, the size and number of colonie...
Humans and mice have different DC subsets, including classical DCs (cDCs, including cDC1s and cDC2s) plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs)9,10,11. It is generally accepted that cDC1s regulate cytotoxic T lymphocyte (CTL) responses to intracellular pathogens and cancer, and cDC2s regulate immune responses to extracellular pathogens, parasites, and allergens12. A significant number of DC...
All authors declare they have no conflicts of interest and that they have nothing to disclose.
This work was supported by Program of Tianjin Science and Technology Plan (20JCQNJC00550), Tianjin Health Science and Technology Project (TJWJ202021QN033 and TJWJ202021QN034).
Name | Company | Catalog Number | Comments |
β-Mercaptoethanol | Solarbio | M8211 | |
6-well plate | Corning | 3516 | |
APC-MHC II | Biolegend | 116417 | |
FBS | Gibco | 10100 | |
PE-CD80 | Biolegend | 104707 | |
Penicillin-Streptomycin | Solarbio | P1400 | |
Percp/cy5.5-CD11c | Biolegend | 117327 | |
PRMI-1640 | Thermo | 11875093 | |
Recombinant Mouse GM-CSF | Solarbio | P00184 | |
Recombinant Mouse IL-4 | Solarbio | P00196 | |
TruStain Fc PLUS (anti-mouse CD16/32) Antibody | Biolegend | 156603 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved