A subscription to JoVE is required to view this content. Sign in or start your free trial.
Bacteria secrete nanometer-sized extracellular vesicles (EVs) carrying bioactive biological molecules. EV research focuses on understanding their biogenesis, role in microbe-microbe and host-microbe interactions and disease, as well as their potential therapeutic applications. A workflow for scalable isolation of EVs from various bacteria is presented to facilitate standardization of EV research.
Diverse bacterial species secrete ~20-300 nm extracellular vesicles (EVs), comprised of lipids, proteins, nucleic acids, glycans, and other molecules derived from the parental cells. EVs function as intra- and inter-species communication vectors while also contributing to the interaction between bacteria and host organisms in the context of infection and colonization. Given the multitude of functions attributed to EVs in health and disease, there is a growing interest in isolating EVs for in vitro and in vivo studies. It was hypothesized that the separation of EVs based on physical properties, namely size, would facilitate the isolation of vesicles from diverse bacterial cultures.
The isolation workflow consists of centrifugation, filtration, ultrafiltration, and size-exclusion chromatography (SEC) for the isolation of EVs from bacterial cultures. A pump-driven tangential flow filtration (TFF) step was incorporated to enhance scalability, enabling the isolation of material from liters of starting cell culture. Escherichia coli was used as a model system expressing EV-associated nanoluciferase and non-EV-associated mCherry as reporter proteins. The nanoluciferase was targeted to the EVs by fusing its N-terminus with cytolysin A. Early chromatography fractions containing 20-100 nm EVs with associated cytolysin A - nanoLuc were distinct from the later fractions containing the free proteins. The presence of EV-associated nanoluciferase was confirmed by immunogold labeling and transmission electron microscopy. This EV isolation workflow is applicable to other human gut-associated gram-negative and gram-positive bacterial species. In conclusion, combining centrifugation, filtration, ultrafiltration/TFF, and SEC enables scalable isolation of EVs from diverse bacterial species. Employing a standardized isolation workflow will facilitate comparative studies of microbial EVs across species.
Extracellular vesicles (EVs) are nanometer-sized, liposome-like structures comprised of lipids, proteins, glycans, and nucleic acids, secreted by both prokaryotic and eukaryotic cells1. Since the early studies visualizing the release of EVs from gram-negative bacteria2, the number of biological functions attributed to bacterial EVs (20-300 nm in diameter) has constantly been growing in the past decades. Their functions include transferring antibiotic resistance3, biofilm formation4, quorum sensing5, and toxin delivery6. There ....
NOTE: Ensure that all work involving bacteria and recombinant DNA follows best practices for biosafety containment appropriate for the biosafety hazard level of each strain. Work should be done in accordance with local, national, and international biosafety regulations.
1. Bacterial strains and culturing conditions
NOTE: Bacterial strains used in this study were Escherichia coli MP113, Akkermansia mucinophila,.......
To assess which SEC chromatography fractions were enriched for EVs, the SEC column was loaded with 2 mL of E. coli MP1-conditioned culture medium that had been concentrated 1,000-fold by TFF, and sequential fractions were collected. Using MRPS, it was found that Fractions 1-6 contained the most EVs (Figure 2A). Subsequent fractions contained very few EVs, comprising instead of EV-free proteins (Figure 2B). EVs were primarily <100 nm in diameter (
In the protocol above, a method is described that is scalable and reliably isolates EVs from various gram-negative/positive and aerobic/anaerobic bacteria. It has several potential stopping points throughout the procedure, although it is better to avoid taking longer than 48 h to isolate EVs from conditioned bacterial culture media.
First, it consists of culturing bacteria to generate conditioned bacterial culture medium. It was found that increasing the culture time to at least 48 h and using.......
The research described above was supported by NIH TL1 TR002549-03 training grant. We thank Drs. John C. Tilton and Zachary Troyer (Case Western Reserve University) for facilitating access to the particle size analyzer instrument; Lew Brown (Spectradyne) for technical assistance with analysis of the particle size distribution data; Dr. David Putnam at Cornell University for providing pClyA-GFP plasmid14; and Dr. Mark Goulian at the University of Pennsylvania for providing us with the E. coli MP113.
....Name | Company | Catalog Number | Comments |
0.5 mL flat cap, thin-walled PCR tubes | Thermo Scientific | 3430 | it is important to use thin-walled PCR tubes to obtain accurate readings with Qubit |
16% Paraformaldehyde (formaldehyde) aqueous solution | Electron microscopy sciences | 15700 | |
250 mL Fiberlite polypropylene centrifuge bottles | ThermoFisher | 010-1495 | |
500 mL Fiberlite polypropylene centrifuge bottles | ThermoFisher | 010-1493 | |
65 mm Polypropylene Round-Bottom/Conical Bottle Adapter | Beckman Coulter | 392077 | Allows Vivacell to fit in rotor |
Akkermansia mucinophila | ATCC | BAA-835 | |
Amicon-15 (100 kDa MWCO) | MilliporeSigma | UFC910024 | |
Avanti J-20 XPI centrifuge | Beckman Coulter | No longer sold by Beckman. Avanti J-26XP is closest contemporary model. | |
Bacteroides thetaiotaomicron VPI 5482 | ATCC | 29148 | |
Bifidobacterium breve | NCIMB | B8807 | |
Bifidobacterium dentium | ATCC | 27678 | |
Brain Heart infusion (BHI) broth | Himedia | M2101 | After autoclaving, Both BHI broth and agar were introduced into the anaerobic chamber, supplemented with Menadione (1 µg/L), hematin (1.2 µg/L), and L-Cysteine Hydrochloride (0.05%). They were then incubated for at least 24 h under anaerobic conditions before inoculation with the anaerobic bacterial strains. |
C-300 microfluidics cartridge | Spectradyne | ||
Chloramphenicol | MP Biomedicals | ICN19032105 | |
Escherichia coli HST08 (Steller competent cells) | Takara | 636763 | |
Escherichia coli MP1 | Dr. Mark Goulian (gift) | commensal bacteria derived from mouse gut | |
Fiberlite 500 mL to 250 mL adapter | ThermoFisher | 010-0151-05 | used with Fiberlite rotor to enable 250 mL bottles to be used for smaller size of starting bacterial culture |
Fiberlite fixed-angle centrifuge rotor | ThermoFisher | F12-6x500-LEX | fits 6 x 500 mL bottles |
Formvar Carbon Film 400 Mesh, Copper | Electron microscopy sciences | FCF-400-CU | |
Glutaraldehyde (EM-grade, 10% aqeous solution) | Electron microscopy sciences | 16100 | |
Hematin | ChemCruz | 207729B | Stock solution was made in 0.2 M L-histidine solution as 1.2 mg/mL |
Infinite M Nano+ Microplate reader | Tecan | This equibment was used to measure the mCherry fluorescence | |
In-Fusion HD Cloning Plus | Takara | 638909 | For cloning of the PCR fragements into the PCR-lineraized vectors |
JS-5.3 AllSpin Swinging-Bucket Rotor | Beckman Coulter | 368690 | |
Lauria Bertani (LB) broth, Miller | Difco | 244620 | |
L-Cysteine Hydrochloride | J.T. Baker | 2071-05 | It should be weighed and added directly to the autoclaved BHI media inside the anaerobic chamber |
Masterflex Fitting, Polypropylene, Straight, Female Luer to Hose Barb Adapter, 1/8" ID; 25/PK | cole-parmer - special | HV-30800-08 | connection adapters for filtration tubing circuit |
Masterflex Fitting, Polypropylene, Straight, Male Luer to Hose Barb Adapter, 1/8" ID; 25/PK | cole-parmer - special | HV-30800-24 | connection adapters for filtration tubing circuit |
Masterflex L/S Analog Variable-Speed Console Drive, 20 to 600 rpm | Masterflex | HV-07555-00 | |
Masterflex L/S Easy-Load Head for Precision Tubing, 4-Roller, PARA Housing, SS Rotor | Masterflex | EW-07514-10 | |
Masterflex L/S Precision Pump Tubing, PharmaPure, L/S 16; 25 ft | Cole Palmer | EW-06435-16 | low-binding/low-leaching tubing |
Menadione (Vitamin K3) | MP | 102259 | Stock solution was made in ethanol as 1 mg/mL |
MIDIKROS 41.5CM 100K MPES 0.5MM FLL X FLL 1/PK | Repligen | D04-E100-05-N | TFF device we have used to filter up to 2 L of E. coli culture supernatant |
Nano-Glo Luciferase Assay System | Promega | N1110 | This assay kit was used to measure the luminescence of the nluc reporter protein |
NanoLuc (Nluc) Luciferase Antibody, clone 965808 | R&D Systems | MAB10026 | |
nCS1 microfluidics resistive pulse sensing instrument | Spectradyne | ||
nCS1 Viewer | Spectradyne | Analysis software for particle size distribution | |
OneTaq 2x Master Mix with Standard Buffer | NEB | M0482 | DNA polymerase master mix used to perform the routine PCR reactions for colony checking |
Protein LoBind, 2.0 mL, PCR clean tubes | Eppendorf | 30108450 | |
Q5 High-Fidelity 2x Master Mix | NEB | M0492 | DNA polymerase master mix used to perform the PCR reactions needed for cloning |
qEV original, 35 nm | Izon | maximal loading volume of 0.5 mL | |
qEV rack | Izon | for use with the qEV-original SEC columns | |
qEV-2, 35 nm | Izon | maximal loading volume of 2 mL | |
Qubit fluorometer | ThermoFisher | Item no longer available. Closest available product is Qubit 4.0 Fluorometer (cat. No. Q33238) | |
Qubit protein assay kit | ThermoFisher | Q33211 | Store kit at room temperature. Standards are stored at 4 °C. |
Sorvall Lynx 4000 centrifuge | ThermoFisher | 75006580 | |
SpectraMax i3x Microplate reader | Molecular Devices | This equipment was used to measure the nanoluciferase bioluminescence | |
Stericup Quick-release-GP Sterile Vacuum Filtration system (150, 250, or 500 mL) | MilliporeSigma | S2GPU01RE S2GPU02RE S2GPU05RE | One or multiple filters can be used to accommodate working volumes. In our experience, you can filter twice the volume listed on the product size. |
Uranyl acetate | Electron microscopy sciences | 22400 | |
Vinyl anaerobic chamber | Coy Lab | ||
Vivacell 100, 100,000 MWCO PES | Sartorius | VC1042 | |
Whatman Anotop 10 Plus syringe filters (0.02 micron) | MilliporeSigma | WHA68093002 | to filter MRPS diluent |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved