JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

잎 딱정벌레의 숙주 - 장 microbiota 상호 작용 연구를위한 조직 배양 묘목으로 축 곤충 준비 및 사육

Published: October 8th, 2021

DOI:

10.3791/63195

1State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 2Institute of Plant Protection, Wuhan Institute of Landscape Architecture, 3McKetta Department of Chemical Engineering, University of Texas at Austin

도끼 곤충을 얻기 위해 달걀 표면을 살균하고 부화 한 유충은 도끼 잎을 사용하여 사육됩니다. 이 방법은 항생제를 투여하거나 다른 잎을 먹는 곤충에도 적용 할 수있는 인공 식단을 개발하지 않고도 축산 곤충 준비를위한 효율적인 방법을 제공합니다.

곤충 내장은 숙주의 생리적 특성에 심각한 영향을 줄 수있는 다양한 박테리아에 의해 식민지화됩니다. 특정 박테리아 균주를 축삭 곤충에 도입하는 것은 장내 미생물 기능을 검증하고 장내 미생물 - 숙주 상호 작용의 기초가되는 메커니즘을 밝히는 강력한 방법입니다. 항생제를 투여하거나 달걀 표면을 살균하는 것은 곤충에서 장내 박테리아를 제거하는 데 일반적으로 사용되는 두 가지 방법입니다. 그러나 곤충에 대한 항생제의 잠재적 인 부작용 외에도 이전 연구에 따르면 항생제를 먹이면 장내 박테리아를 제거 할 수 없다는 사실이 밝혀졌습니다. 따라서 세균이없는 인공 식단은 일반적으로 도끼 곤충을 유지하기 위해 사용되며, 이는 자연 식품의 영양 성분과 완전히 닮을 수없는 지루하고 노동 집약적 인 과정입니다. 여기에 설명 된 것은 잎 딱정벌레 (Plagiodera versicolora)의 축삭 유충을 준비하고 유지하기위한 효율적이고 간단한 프로토콜입니다. 특히, 딱정벌레 알의 표면은 멸균되었고, 그 다음에 세균이없는 포플러 잎이 도끼 유충을 후방하는 데 사용되었습니다. 곤충의 축삭 상태는 배양-의존적 및 배양-독립적인 검정을 통해 추가로 확인되었다. 종합적으로, 계란 소독과 무균 재배를 결합함으로써, 축삭 P. versicolora를 얻기 위해 효율적이고 편리한 방법이 개발되어 다른 잎을 먹는 곤충에게 쉽게 옮길 수있는 도구를 제공했습니다.

포유류와 마찬가지로, 곤충 소화관은 음식 소화 및 흡수를위한 공동입니다. 대부분의 곤충은 내장에서 번성하고 숙주1이 제공하는 영양에 따라 사는 다양한 공생 박테리아를 가지고 있습니다. 장내 공생 공동체는 음식 소화 및 해독 2,3,4, 영양 및 개발 5,6,7, 병원균 및 기생충에 대한 방어 8,9,10,11, 화학 통신 12,13 및 행동 14 포함하여 곤충의 여러 생리 과정에 중대한 영향을 미칩니다. ,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 곤충 사육

  1. P. versicolora 개체군을 27 °C 및 70 ± 5 % 상대 습도의 조건에서 성장 챔버에 유지하고 16 h 빛 / 8 시간 어둠의 광주기로 유지하십시오. 타일 젖은 흡수 종이가있는 구멍이 뚫린 플라스틱 상자에 넣고 신선한 포플러 가지를 먹이십시오. 흡수 용지에 깨끗한 물을 뿌려 수분을 유지하고 이틀마다 가지를 바꿉니다.
  2. 번식 후 산란을 위해 성인을 격리하십시오. ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

P. versicolora의 수명 단계는 그림 1에 나와 있습니다. 성인 남성은 성인 여성보다 작습니다(그림 1A). 들판에서, 딱정벌레는 잎에 알을 모은다. 여기에서는 잎에서 네 개의 알을 떼어냈다(그림 1B). 도끼 곤충 사육에 사용되는 포플러 줄기 세그먼트와 묘목은 그림 2에 나와 있습니다. 3번째 인스타 ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

세균이 없는 유충을 제조하고 특정 박테리아 균주를 재도입하여 gnotobiotic 유충을 얻는 것은 숙주-미생물 상호작용의 기초가 되는 기전을 밝히는 강력한 방법이다. 새로 부화 한 유충은 두 가지 주요 방법으로 장내 미생물을 얻습니다 : 어머니로부터 자손으로의 수직 전달 또는 형제 자매와 환경으로부터의 수평 획득34. 전자는 난자 표면(35)의 오염을 통해 자손?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

이 작품은 중국 국립 자연 과학 재단 (31971663)과 CAST (2020QNRC001)의 젊은 엘리트 과학자 후원 프로그램이 자금을 지원했습니다.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
0.22 µm syringe filtersMilliporeSLGP033RB
1 mg/mL NAA stock solutiona. Prepare 0.1 M NaOH solution (dissolve 0.8 g NaOH in 200 mL of distilled water).
b. Add 0.2 g NAA in a 250 mL beaker, add little 0.1 M NaOH solution until NAA dissolved, and adjust the final volume to 200 mL with distilled water.
c. Filter the solution to remove bacteria with a 0.22 µm syringe filter and a 50 mL sterile syringe, subpackage the solution in 1.5 mL centrifuge tubes and restore at -20 °C.
1.5 mL microcentrifuge tubesSangon BiotechF600620
10x PBS stock solutionBiosharp Life SciencesBL302A
2 M KOH solutionDissolve 22.44 g KOH (molecular weight: 56.1) in 200 mL of distilled water and autoclave it for 20 min at 121 °C.
250 mL and 2,000 mL beakersShubosb16455
50 mL sterile syringesJintaJT0125789
500 mL measuring cylinderShubosb1601
50x TAE stock solutiona. Dissolve 242 g Tris and 18.612 g EDTA in 700 mL of distilled water.
b. Adjust pH to 7.8 with about 57.1 mL of acetic acid.
c. Adjust the final volume to 1,000 mL.
d. The stock solution was diluted to 1x TAE buffer when used.
75% ethanolXingheda trade
α-naphthalene acetic acid (NAA)Solarbio Life Sciences86-87-3
Absorbing paper22.3 cm x 15.3 cm x 9 cm
Acetic acidSinopharm Chemical Reagent Co. Ltd
AgarCoolaber9002-18-0
AgaroseBiowest111860
AutoclavePanasonicMLS-3781L-PC
Bead-beating homogenizerJing XinXM-GTL64
DNA extraction kitMP Biomedicals116560200
EDTASaiguo Biotech1340
Filter paperJiaojie70 mm diameter
Gel electrophoresis unitBio-rad164-5052
Gel Signal Green nucleic acid dyeTsingKeTSJ003
Germ-free poplar seedlingsShan Xin poplar from Ludong University in Shandong Province
Golden Star Super PCR Master Mix (1.1×)TsingKeTSE101
Growth chamberRuihuaHP400GS-C
LB agar mediuma. Dissolve 5 g tryptone, 5 g NaCl, 2.5 g yeast extract in 300 mL of distilled water.
b. Adjust the final volume to 500 mL, transfer the solution to a 1,000 mL conical flask, and add 7.5 g agar.
c. Autoclave the medium for 20 min at 121 °C.
Mini centrifugeDRAGONLABD1008
MS basic mediumCoolaberPM1121-50LM0245
MS solid medium for germ-free poplar seedling culturea. Dissolve 4.43 g MS basic medium powder and 30 g sucrose in 800 mL of distilled water.
b. Adjust the pH to about 5.8 with 2 M KOH by a pH meter.
c. Adjust the final volume to 1,000 mL, separate into two parts, transfer into two 1,000 mL conical flasks, and add 2.6 g agar per 500 mL.
d. Autoclave for 20 min at 121 °C.
NanoDrop 1000 spectrophotometerThermo Fisher Scientific
Paintbrush1 cm width, used to collect the eggs
ParafilmBemisPM-996
PCR Thermal CyclersEppendorf6331000076
Petri dishesSupin90 mm diameter
pH meterMETTLER TOLEDOFE20
Pipettes 0.2-2 µLGilsonECS000699
Pipettes 100-1,000 µLEppendorf3120000267
Pipettes 20-200 µLEppendorf3120000259
Pipettes 2-20 µLEppendorf3120000232
Plant tissue culture containerChembaseZP21240 mL
Plastic box2.35 L
Potassium hydroxide (KOH)Sinopharm Chemical Reagent Co. Ltd
Primers for amplifying the bacterial 16S rRNA geneSangon Biotech27-F: 5’-ACGGATACCTTGTTACGAC-3’, 1492R: 5’-ACGGATACCTTGTTACGAC-3’
Sodium chloride (NaCl)Sinopharm Chemical Reagent Co. Ltd
Sodium hydroxide (NaOH)Sinopharm Chemical Reagent Co. Ltd
Steel balls0.25 mmused to grind tissues
StereomicroscopeOLYMPUSSZ61
SucroseSinopharm Chemical Reagent Co. Ltd
Trans2K plus II DNA markerTransgene BiotechBM121-01
Tris baseBiosharp Life Sciences1115
TryptoneThermo Fisher Scientific LP0037
UV transilluminatorMonad BiotechQuickGel 6100
VortexerScilogexMX-S
Willow branchesSha Lake Park, Wuhan, China
Willow leaf beetleHuazhong Agricultural University, Wuhan, China
Yeast extractThermo Fisher ScientificLP0021

  1. Moran, N. A., Ochman, H., Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annual Review of Ecology, Evolution, and Systematics. 50 (1), 451-475 (2019).
  2. Warnecke, F., et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450 (7169), 560-565 (2007).
  3. Tokuda, G., et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America. 115 (51), 11996-12004 (2018).
  4. Wang, G. H., et al. Changes in microbiome confer multigenerational host resistance after sub-toxic pesticide exposure. Cell Host & Microbe. 27 (2), 213-224 (2020).
  5. Shin, S. C., et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 334 (6056), 670-674 (2011).
  6. Storelli, G., et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metabolism. 14 (3), 403-414 (2011).
  7. Salem, H., et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proceedings. Biological Sciences. 281 (1796), 20141838 (2014).
  8. Koch, H., Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America. 108 (48), 19288-19292 (2011).
  9. Cirimotich, C. M., et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 332 (6031), 855-858 (2011).
  10. Kaltenpoth, M., Gottler, W., Herzner, G., Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology. 15 (5), 475-479 (2005).
  11. Yuan, C., Xing, L., Wang, M., Hu, Z., Zou, Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. Insect Science. , (2021).
  12. Dillon, R. J., Vennard, C. T., Charnley, A. K. Pheromones - Exploitation of gut bacteria in the locust. Nature. 403 (6772), 851 (2000).
  13. Xu, L. T., Lou, Q. Z., Cheng, C. H., Lu, M., Sun, J. H. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microbial Ecology. 70 (4), 1012-1023 (2015).
  14. Schretter, C. E., et al. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature. 563 (7731), 402-406 (2018).
  15. Jia, Y., et al. Gut microbiome modulates Drosophila aggression through octopamine signaling. Nature Communications. 12 (1), 2698 (2021).
  16. Ma, M., et al. Metabolic and immunological effects of gut microbiota in leaf beetles at the local and systemic levels. Integrative Zoology. 16 (3), 313-323 (2021).
  17. Xu, L., et al. Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. Microbiome. 9 (1), 98 (2021).
  18. Xu, L., et al. Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. Journal of Pest Science. 92, 343-351 (2019).
  19. Berasategui, A., Shukla, S., Salem, H., Kaltenpoth, M. Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology. 100 (4), 1567-1577 (2016).
  20. Tikhe, C. V., Martin, T. M., Howells, A., Delatte, J., Husseneder, C. Assessment of genetically engineered Trabulsiella odontotermitis as a 'Trojan Horse' for paratransgenesis in termites. BMC Microbiology. 16 (1), 202 (2016).
  21. Wang, S., et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America. 109 (31), 12734-12739 (2012).
  22. Leonard, S. P., et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 367 (6477), 573-576 (2020).
  23. Kietz, C., Pollari, V., Meinander, A. Generating germ-free Drosophila to study gut-microbe interactions: protocol to rear Drosophila under axenic conditions. Current Protocols in Toxicology. 77 (1), 52 (2018).
  24. Brummel, T., Ching, A., Seroude, L., Simon, A. F., Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proceedings of the National Academy of Sciences of the United States of America. 101 (35), 12974-12979 (2004).
  25. Correa, M. A., Matusovsky, B., Brackney, D. E., Steven, B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nature Communications. 9 (1), 4464 (2018).
  26. Romoli, O., Schonbeck, J. C., Hapfelmeier, S., Gendrin, M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host-microbiota interactions. Nature Communications. 12 (1), 942 (2021).
  27. Berasategui, A., et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Molecular Ecology. 26 (15), 4099-4110 (2017).
  28. Lin, X. L., Kang, Z. W., Pan, Q. J., Liu, T. X. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae). Insect Science. 22 (5), 619-628 (2015).
  29. Muhammad, A., Habineza, P., Hou, Y., Shi, Z. Preparation of red palm weevil Rhynchophorus Ferrugineus (Olivier) (Coleoptera: Dryophthoridae) germ-free larvae for host-gut microbes interaction studies. Bio-protocol. 9 (24), 3456 (2019).
  30. Gelman, D. B., Bell, R. A., Liska, L. J., Hu, J. S. Artificial diets for rearing the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Science. 1, 7 (2001).
  31. Bengtson, D. A. A comprehensive program for the evaluation of artificial diets. Journal of the World Aquaculture Society. 24 (2), 285-293 (2007).
  32. Utsumi, S., Ando, Y., Ohgushi, T. Evolution of feeding preference in a leaf beetle: the importance of phenotypic plasticity of a host plant. Ecology Letters. 12 (9), 920-929 (2009).
  33. Ishihara, M., Ohgushi, T. Reproductive inactivity and prolonged developmental time induced by seasonal decline in host plant quality in the willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). Environmental Entomology. 35 (2), 524-530 (2006).
  34. Bright, M., Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nature Reviews: Microbiology. 8 (3), 218-230 (2010).
  35. Hassan, B., Siddiqui, J. A., Xu, Y. Vertically transmitted gut bacteria and nutrition influence the immunity and fitness of Bactrocera dorsalis larvae. Frontiers in Microbiology. 11, 596352 (2020).
  36. Hosokawa, T., et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nature Microbiology. 1, 15011 (2016).
  37. Habineza, P., et al. The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Frontiers in Microbiology. 10, 1212 (2019).
  38. Meilan, R., Ma, C. Poplar (Populus spp.). Methods in Molecular Biology. 344, 143-151 (2006).
  39. Wani, Z. A., Ashraf, N., Mohiuddin, T., Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology. 99 (7), 2955-2965 (2015).
  40. Grout, B. W. Meristem-tip culture. Methods in Molecular Biology. 6, 81-91 (1990).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved