JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Medicine

Ex Vivo and In Vivo Animal Models for Mechanical and Chemical Injuries of Corneal Epithelium

Published: April 6th, 2022

DOI:

10.3791/63217

1Department of Ophthalmology, Chang-Gung Memorial Hospital, 2Chang-Gung University College of Medicine, 3Institute of Clinical Medicine, National Yang Ming Chiao Tung University

Abstract

Corneal injury to the ocular surface, including chemical burn and trauma, may cause severe scarring, symblepharon, corneal limbal stem cells deficiency, and result in a large, persistent corneal epithelial defect. Epithelial defect with the following corneal opacity and peripheral neovascularization result in irreversible visual impairment and hinder future management, especially keratoplasty. Since the animal model can be used as an effective drug development platform, models of corneal injury to the mouse and alkali burn to rabbit corneal epithelium are developed here. New Zealand white rabbit is used in the alkali burn model. Different concentrations of sodium hydroxide can be applied onto the central circular area of the cornea for 30 s under intramuscular and topical anesthesia. After copious isotonic normal saline irrigation, residual loose corneal epithelium was removed with corneal burr deep down to the Bowman's layer within this circular area. Wound healing was documented by fluorescein staining under Cobalt blue light. C57BL/6 mice were used in the traumatic model of murine corneal epithelium. The murine central cornea was marked using a skin punch, 2 mm in diameter, and then debrided by a corneal rust ring remover with a 0.5 mm burr under a stereomicroscope. These models can be prospectively used to validate the therapeutic effect of eye drops or mixed agents such as stem cells, which potentially facilitate corneal epithelial regeneration. By observing corneal opacity, peripheral neovascularization, and conjunctival congestion with stereomicroscope and imaging software, therapeutic effects in these animal models can be monitored.

Explore More Videos

Keywords Ex Vivo

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved