JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a battery of methods that includes analytical size-exclusion chromatography to study histone chaperone oligomerization and stability, pull-down assay to unravel histone chaperone-histone interactions, AUC to analyze the stoichiometry of the protein complexes, and histone chaperoning assay to functionally characterize a putative histone chaperone in vitro.

Abstract

Histone proteins associate with DNA to form the eukaryotic chromatin. The basic unit of chromatin is a nucleosome, made up of a histone octamer consisting of two copies of the core histones H2A, H2B, H3, and H4, wrapped around by the DNA. The octamer is composed of two copies of an H2A/H2B dimer and a single copy of an H3/H4 tetramer. The highly charged core histones are prone to non-specific interactions with several proteins in the cellular cytoplasm and the nucleus. Histone chaperones form a diverse class of proteins that shuttle histones from the cytoplasm into the nucleus and aid their deposition onto the DNA, thus assisting the nucleosome assembly process. Some histone chaperones are specific for either H2A/H2B or H3/H4, and some function as chaperones for both. This protocol describes how in vitro laboratory techniques such as pull-down assays, analytical size-exclusion chromatography, analytical ultra-centrifugation, and histone chaperoning assay could be used in tandem to confirm whether a given protein is functional as a histone chaperone.

Introduction

Nucleosomes composed of DNA and histone proteins form the structural unit of chromatin and regulate several critical cellular events. Nucleosomes are dynamically repositioned and remodeled to make DNA accessible to various processes such as replication, transcription, and translation1,2. Histones that are highly basic either tend to interact with acidic proteins in the cellular milieu or undergo aggregation, thus leading to various cellular defects3,4,5. A group of dedicated proteins called histone chaperones aid the ....

Protocol

1. Analytical size-exclusion chromatography to elucidate the oligomeric status and stability of histone chaperones

  1. Analysis of the oligomeric status of histone chaperones
    1. Equilibrate a 24 mL analytical size-exclusion chromatography (SEC) column with 1.2 column volume (CV), i.e., 28.8 mL of degassed SEC buffer [20 mM of Tris-HCl (pH 7.5), 300 of mM NaCl, and 1 mM of β-mercaptoethanol (β-ME)] at 4 °C (see Table of Materials).
      NOTE: Column type, buffer composition, and buffer pH may be selected based on the protein of interest. The sample injection volume should not exceed 500 µL for a ....

Representative Results

The recombinant N-terminal nucleoplasmin domain of the protein FKBP53 from Arabidopsis thaliana was subjected to analytical SEC. The elution peak volume was plotted against the standard curve to identify its oligomeric state. The analytical SEC results revealed that the domain exists as a pentamer in solution, with an approximate molecular mass of 58 kDa (Figure 1A,B). Further, the nucleoplasmin domain was analyzed for thermal and chemical stability in conjunction w.......

Discussion

This work demonstrates and validates a comprehensive set of protocols for the biochemical and biophysical characterization of a putative histone chaperone. Herein, recombinantly expressed and purified NAP family proteins, AtNRP1 and AtNRP2, and the N-terminal nucleoplasmin domain of AtFKBP53 were used to demonstrate the protocols. The same set of experiments could very well be used to delineate the functional attributes of previously uncharacterized histone chaperones from any organism.

The fi.......

Disclosures

No conflict of interest was declared.

Acknowledgements

The extramural grants to Dileep Vasudevan from the Science and Engineering Research Board, Government of India [CRG/2018/000695/PS] and the Department of Biotechnology, Ministry of Science and Technology, Government of India [BT/INF/22/SP33046/2019], as well as the intramural support from the Institute of Life Sciences, Bhubaneswar are greatly acknowledged. We thank Ms. Sudeshna Sen and Ms. Annapurna Sahoo for their help with histone preparation. The discussions with our colleagues Dr. Chinmayee Mohapatra, Mr. Manas Kumar Jagdev, and Dr. Shaikh Nausad Hossain are also acknowledged.

....

Materials

NameCompanyCatalog NumberComments
Acetic acid (glacial)SigmaA6283
AcrylamideMP Biomedicals814326
AgaroseMP Biomedicals193983
AKTA Pure 25M FPLCCytiva29018226Instrument for protein purification
Ammonium persulfate (APS)SigmaA3678
An-60Ti rotorBeckman Coulter361964Rotor for analytical ultracentrifugation
Bovine serum albumin (BSA)SigmaA7030
ChloroformSigmaC2432
Coomassie brilliant blue R 250Sigma1.15444
Dialysis tubing (7 kDa cut-off)Thermo Fisher68700For dialysing protein samples
Dithiothreitol (DTT)MP Biomedicals100597
DNA Loading DyeNew England BiolabsB7025S
EDTA disodium saltMP Biomedicals194822
Electronic balanceShimadzuATX224R
EthanolSigmaE7023
Ethidium bromide (EtBr)SigmaE8751
Gel Doc SystemBio-Rad12009077For imaging gels after staining
Horizontal gel electrophoresis apparatusBio-Rad1704405Instrument for agarose gel electrophoresis
Hydrochloric acid (HCl)Sigma320331
ImidazoleMP Biomedicals102033
Magnesium chloride (MgCl2)SigmaM8266
MicropipettesEppendorfZ683779For pipetting of micro-volumes
Mini-PROTEAN electrophoresis systemBio-Rad1658000Instrument for SDS-PAGE
N,N-methylene-bis-acrylamideMP Biomedicals800172
Nano dropThermo FisherND-2000For measurement of protein and DNA concentrations
Ni-NTA agaroseInvitrogenR901-15Resin beads for pull-down assay
Optima AUC analytical ultracentrifugeBeckman CoulterB86437Instrument for analytical ultracentrifugation
pH MeterMettler ToledoMT30130863
PhenolSigmaP4557
Plasmid isolation kitQiagen27104
Proteinase KSigma-Aldrich1.07393
pUC19Thermo FisherSD0061Plasmid for supercoiling assay
Refrigerated high-speed centrifugeThermo Fisher75002402
SDS-PAGE protein markerBio-Rad1610317
SEDFITFree software program for analytical ultracentrifugation data analysis
SEDNTERPFree software program to estimate viscosity and density of buffer and partial specific volume of a protein
SigmaPrep Spin ColumnsSigmaSC1000For pull-down assay
Sodium acetateSigmaS2889
Sodium chloride (NaCl)MerckS9888
Sodium dodecyl sulfate (SDS)MP Biomedicals102918
Superdex 200 Increase 10/300 GLCytiva28990944Column for analytical size-exclusion chromatography
Superdex 75 Increase 10/300 GLCytiva29148721Column for analytical size-exclusion chromatography
TEMEDSigma1.10732
Topoisomerase IInspiralisWGT102Enzyme used in plasmid supercoiling assay
Tris baseMerckT1503
Tween-20SigmaP1379
UreaMP Biomedicals191450
Water bathNüveNB 5For heat treatment of protein samples
β-mercaptoethanol (β-ME)SigmaM6250

References

  1. Hübner, M. R., Eckersley-Maslin, M. A., Spector, D. L. Chromatin organization and transcriptional regulation. Current Opinion in Genetics and Development. 23 (2), 89-95 (2013).
  2. Lai, W. K. M., Pugh, B. F. U....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Histone ChaperonesPull down AssaysAnalytical Size Exclusion ChromatographyAnalytical Ultra centrifugationHistone Chaperoning AssayChromatin ResearchH2A H2B DimerH3 H4 TetramerSDS PAGECoomassie Brilliant Blue R250Dialysis BufferAnalytical Ultra Centrifuge

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved