A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This work describes an online experimentation system that provides visualized experiments, including the visualization of theories, concepts, and formulas, visualizing the experimental process with three-dimensional (3-D) virtual test rigs, and visualizing the control and monitoring system using widgets such as charts and cameras.
Experimentation is crucial in engineering education. This work explores visualized experiments in online laboratories for teaching and learning and also research. Interactive and visualizing features, including theory-guided algorithm implementation, web-based algorithm design, customizable monitoring interface, and three-dimensional (3-D) virtual test rigs are discussed. To illustrate the features and functionalities of the proposed laboratories, three examples, including the first-order system exploration using a circuit-based system with electrical elements, web-based control algorithm design for virtual and remote experimentation, are provided. Using user-designed control algorithms, not only can simulations be conducted, but real-time experiments can also be conducted once the designed control algorithms have been compiled into executable control algorithms. The proposed online laboratory also provides a customizable monitoring interface, with which users can customize their user interface using provided widgets such as the textbox, chart, 3-D, and camera widget. Teachers can use the system for online demonstration in the classroom, students for after-class experimentation, and researchers to verify control strategies.
Laboratories are vital infrastructure for research and education. When conventional laboratories are not available and/or accessible due to different causes, for example, unaffordable purchases and maintenance cost, safety considerations, and crises such as the coronavirus disease 2019 (COVID-19) pandemic, online laboratories can offer alternatives1,2,3. Like conventional laboratories, significant progress such as interactive features4 and customizable experiments5 have been achieved in the online laboratories. Before and during the COVID-19 pandemic, online laboratories are providing experimental services to users throughout the world6,7.
Among online laboratories, remote laboratories can provide users with an experience similar to hands-on experiments with the support of physical test rigs and cameras8. With the advancement of the Internet, communication, computer graphics, and rendering technologies, virtual laboratories also provide alternatives to conventional laboratories1. The effectiveness of remote and virtual laboratories to support research and education has been validated in related literature1,9,10.
Providing visualized experiments is crucial for online laboratories, and visualization in online experimentation has become a trend. Different visualization techniques are achieved in online laboratories, for example, curve charts, two-dimensional (2-D) test rigs, and three-dimensional (3-D) test rigs11. In control education, numerous theories, concepts, and formulas are obscure to comprehend; thus, visualized experiments are vital to enhancing teaching, student learning, and research. The involved visualizing can be concluded into the following three categories: (1) Visualizing theories, concepts, and formulas with web-based algorithm design and implementation, with which simulation and experimentation can be conducted; (2) Visualizing the experimental process with 3-D virtual test rigs; (3) Visualizing control and monitoring using widgets such as a chart and a camera widget.
In this work, three separate visualized examples are provided to enhance teaching and learning and research, which can be accessed via the Networked Control System Laboratory (NCSLab https://www.powersim.whu.edu.cn/react).
1. Example 1: First-order system using circuit-based experimentation protocol
2. Example 2: Interactive and visualized virtual experimentation protocol
3. Example 3: Research with remote and virtual laboratories protocol
The proposed laboratory system has been used in several different disciples at Wuhan University, such as the Automation, Power and Energy Engineering, Mechanical Engineering, and other universities, such as Henan Agricultural University6.
Teachers/students/researchers are provided with great flexibility to explore the system using different virtual and/or physical test rigs, define their control algorithms, and customize their monitoring interface; thus, users at differ...
The presented protocol describes a hybrid online laboratory system that integrates physical test rigs for remote experimentation and 3-D virtual test rigs for virtual experimentation. Several different block libraries are provided for the algorithm design process, such as the electrical elements for circuit-based design. Users from control backgrounds can focus on learning without programming skills. The proper design of a control algorithm that can be applied to a suitable test rig should be considered. It is also ...
The authors have nothing to disclose.
This work was supported by the National Natural Science Foundation of China under Grant 62103308, Grant 62173255, Grant 62073247, and Grant 61773144.
Name | Company | Catalog Number | Comments |
Fan speed control system | / | / | Made by our team |
https://www.powersim.whu.edu.cn/react | Made by our team |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved