JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Environment

利用显微CT扫描分析寄生植物与宿主的相互作用

Published: January 12th, 2022

DOI:

10.3791/63423

1Harvard University Herbaria, 2Hanse-Wissenschaftskolleg

显微CT是一种非破坏性工具,可以从三个维度上分析植物结构。本协议描述了利用micro-CT分析寄生植物结构和功能的样品制备。当与特定制剂结合使用时,使用不同的物种来突出该方法的优点。

显微CT扫描已成为研究植物结构和功能的成熟工具。它的非破坏性,加上三维可视化和虚拟切片的可能性,使得对复杂的植物器官进行新颖且越来越详细的分析成为可能。植物之间的相互作用,包括寄生植物与其宿主之间的相互作用,也可以探索。然而,由于这些植物之间的相互作用,扫描前的样品制备变得至关重要,这些植物的组织组织和组成通常不同。此外,在寄生虫宿主材料的取样、处理和制备过程中,必须考虑寄生开花植物的广泛多样性,从高度减少的营养体到树木、草药和灌木。这里描述了将造影剂引入寄生虫和/或寄主植物的两种不同方法,重点是分析造影剂。该器官促进了两种植物之间的联系和交流。遵循简单的方法,可以三维探索Haustorium组织组织的细节,如此处所示的真生,藤本和槲寄生寄生物种。选择特定的造影剂和应用方法还可以详细观察寄生虫在宿主体内的传播,并检测寄生虫和宿主之间的直接血管到血管连接,如此处所示的专性根寄生虫。因此,这里讨论的协议可以应用于寄生开花植物的广泛多样性,以促进对其发育、结构和功能的理解。

高分辨率 X 射线显微计算机断层扫描 (micro-CT) 是一种成像方法,其中从不同的视角记录样品的多张 X 光片(投影),然后用于提供样品的虚拟重建1。然后可以对该虚拟对象进行分析、操作和分割,从而实现三维非破坏性探索2.micro-CT最初设计用于医学分析,后来用于工业应用,还具有可视化内部器官和组织的优势,而无需侵入性程序3。与其他形式的成像一样,显微CT在视场和像素大小之间进行权衡,这意味着大样本的高分辨率成像几乎无法实现4。使用高能X射线源(即同步加速器)和二次光学放大倍率方面不断取得进展,使最小分辨率达到100 nm56以下。然而,对于大样品,需要更长的扫描时间,从而增加由于样品移动或扫描仪内部变形而导致伪影的机会。此外,显微CT通常受到样品内自然密度变化以及样品与X射线相互作用的限制。虽然较高的X射线剂量最适合穿透密度较大的样品,但它在捕获样品与其周围介质之间密度变化的效率较低7。另一方面,较低的X射线剂量提供较少的穿透力,并且通常需要更长的扫描时间,但在密度检测中需要更高的灵敏度7

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 寄生植物样品选择

  1. 收集整个寄生植物,包括附着的宿主茎/根以及寄生宿主器官近端和远端的节段;每段的理想长度相当于镰刀直径的两倍。
    注意:对于侧肋骨,包括形成荛膜的寄生虫母茎/根的一部分(图1AB,D)。对于内寄生虫,收集宿主茎/根的一段,其中寄生虫的迹象可见(图1B)。在端子连接的情况下,应?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

寄生植物的haustorium是一个复杂的器官,包括不同的组织和细胞类型,它们与另一种植物的组织交织和连接,用作宿主20。在分析小型(图1A-C)和大型(图1D,E)豪斯托里亚时,可以利用显微CT扫描以非破坏性和三维方式更好地了解这种复杂结构。为此,可以将对比溶液应用于寄生虫 - 宿主界?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

使用重金属溶液提高植物组织对比度已成为显微CT分析样品制备的关键步骤。Staedler等人已经测试了植物微观形态学实验室中常见的几种化合物,他们建议使用磷钨酸盐作为穿透样品和增加对比度指数8的最有效剂。在分析P. pubera的Haustorium时获得的结果证实了这一建议。在造影剂应用方面,Steadler等人描述造影剂溶液在1至8天内被动渗透通过分析的材料(花.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

我要感谢Simone Gomes Ferreira博士(巴西圣保罗大学显微断层扫描实验室)和Greg Lin博士(美国哈佛大学纳米系统中心)为不同的显微断层扫描系统和数据分析软件提供了最重要的帮助和不可或缺的用户培训。我还要感谢康涅狄格大学(美国)EEB温室的工作人员,特别是克林顿·莫尔斯和马修·欧宝提供 Viscum最小标本。John Wenzel博士为 耻骨吡咯菌的采样提供了机会和巨大的帮助。MSc. Carolina Bastos,MSc. Yasmin Hirao和Talitha Motta极大地帮助了 Scybalium fungiforme的采样。Ariadne Furtado博士、Fernanda Oliveira博士和Maria Aline Neves博士为使用福洛辛B分析内生真菌提供了参考。布鲁塞尔自由大学的视频录制是在Philippe Claeys博士,Christophe Snoeck博士,Jake Griffith硕士,Barabara Veselka博士和Harry Olde Venterink博士的帮助下实现的。资金由高等教育人员改进协调会(CAPES,巴西)和哈佛大学标本馆(美国)提供。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
3D X-ray microscope (XRM) systemZeiss Versa 620used to scan Pyrularia pubera
3D X-ray microscope + A2:D22ZeissVersa 620Used for scanning the species P. pubera
CT-Pro 3D softwareNikonversion XT 3.1.11Used for three-dimensional reconstruction of scans
CT-Vox softwareBrukerversion 3.3.1Used for analyses and acquisition of images and videos
Dragonfly softwareObject Research Systems - ORSversionUsed for analyses and acquisition of images and videos
Glass vialsGlass Vials Inc. SEV2708C-FM-SPSold by VWR - USA; make sure that vials are able to withstand vacuum at ca. 10 psi
Inspect-XZeissversion XT 3.1.11Used for controlling the Nikon X-Tek HMXST225 system
Iodine solution 0.0282 NWR Chemicals BDHBDH7422-1Sold by VWR - USA
Lead Nitrate II PA 500 gVetec361.08Sold by SPLab
Microtomography scannerBrukerSkyscan1176Used for scanning the species C. americana, S. martianus, and S. fungiforme
Microtomography scannerNikonX-Tek HMXST225Used for scanning the species V. minimum
NRecon softwareBrukerversion 1.0.0Used for three-dimensional reconstruction
Phosphotungstic acid hydrate 3% in aqueous solutionElectron Microscopy Sciences101410-756Sold by VWR - USA
Plastic film (Parafilm)Heathrow ScientificPM996Sold by VWR - USA
Plastic IV bag 500 mLTaylor3478Sold by Fibra Cirurgica Produtos para Saude
PVC tubing 3/4''Nalge Nunc InternationalSC63013-164Sold by VWR - USA
Scanning systemNikon X-Tek HMXST225used to scan Viscum minimum
Scanning systemBruker Skyscan 1176used to scan C. americana
Scout-and-ScanTM softwareZeissversion 16Used for controlling the Zeiss Versa 620 system and for three-dimensional reconstruction of scans
Three-way valveToToTDMTWVS-5Sold by Amazon USA
Two-part syringeHSW Henke-Ject4850001000Used without the plunger
Vacuum chamberBinder80080-434Sold by VWR - USA; includes pump and connecting tubes
VG Studio Max softwareVolume Graphicsversion 3.0Used for analyses and acquisition of images and videos

  1. Stock, S. R. . Microcomputed tomography: Methodology and applications. , (2020).
  2. Hounsfield, G. N. Computerized transverse axial scanning (tomography): I. Description of system. British Journal of Radiology. 46 (552), 1016-1022 (1973).
  3. Dutilleul, P., Lafond, J. A. Editorial: Branching and rooting out with a CT Scanner: The why, the how, and the outcomes, present and possibly future pierre. Frontiers in Plant Science. 7 (41), 5-6 (2016).
  4. Metscher, B. D. Biological applications of X-ray microtomography: Imaging micro- anatomy, molecular expression and organismal diversity. Microscopy and Analysis. 27 (2), 13-16 (2013).
  5. Sakdinawat, A., Attwood, D. Nanoscale X-ray imaging. Nature Photonics. 4 (12), 840-848 (2010).
  6. Walton, L. A., et al. Morphological characterisation of unstained and intact tissue micro-architecture by X-ray computed micro- and nano-tomography. Scientific Reports. 5, 1-14 (2015).
  7. Lafond, J. A., Han, L., Dutilleul, P. Concepts and analyses in the ct scanning of root systems and leaf canopies: A timely summary. Frontiers in Plant Science. 6 (1111), 85-91 (2015).
  8. Staedler, Y. M., Masson, D., Schönenberger, J. Plant tissues in 3D via X-Ray Tomography: Simple contrasting methods allow high resolution imaging. PLoS ONE. 8 (9), 75295 (2013).
  9. Heeraman, D. A., Hopmans, J. W., Clausnitzer, V. Three dimensional imaging of plant roots in situ with X-ray Computed Tomography. Plant and Soil. 189, 167-179 (1997).
  10. Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., Inzé, D. Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science. 15 (8), 419-422 (2010).
  11. McElrone, A. J., Choat, B., Parkinson, D. Y., MacDowell, A. A., Brodersen, C. R. Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of Visualized Experiments. (74), e50162 (2013).
  12. Cochard, H., Delzon, S., Badel, E. X-ray microtomography (micro-CT): A reference technology for high-resolution quantification of xylem embolism in trees. Plant, Cell and Environment. 38 (1), 201-206 (2015).
  13. Bastos, C. L., Tamaio, N., Angyalossy, V. Unravelling roots of lianas: A case study in Sapindaceae. Annals of Botany. 118 (4), 733-746 (2016).
  14. da Cunha Neto, I. L., et al. Diversity, distribution, development, and evolution of medullary bundles in Nyctaginaceae. American Journal of Botany. 107 (5), 707-725 (2020).
  15. Milien, M., Renault-Spilmont, A. S., Cookson, S. J., Sarrazin, A., Verdeil, J. L. Visualization of the 3D structure of the graft union of grapevine using X-ray tomography. Scientia Horticulturae. 144, 130-140 (2012).
  16. Paya, A. M., Silverberg, J. L., Padgett, J., Bauerle, T. L. X-ray computed tomography uncovers root-root interactions: Quantifying spatial relationships between interacting root systems in three dimensions. Frontiers in Plant Science. 6 (274), 54-65 (2015).
  17. Teixeira-Costa, L., Ceccantini, G. C. T. Aligning microtomography analysis with traditional anatomy for a 3D understanding of the host-parasite interface - Phoradendron spp. Case study. Frontiers in Plant Science. 7, 1340 (2016).
  18. Lusic, H., Grinstaff, M. W. X-ray-computed tomography contrast agents. Chemical Reviews. 113 (3), 1641-1666 (2013).
  19. Těšitel, J. Functional biology of parasitic plants: a review. Plant Ecology and Evolution. 149 (1), 5-20 (2016).
  20. Teixeira-Costa, L. A living bridge between two enemies: Haustorium structure and evolution across parasitic flowering plants. Revista Brasileira de Botanica. 44 (1), 165-178 (2021).
  21. Kuijt, J. . The Biology of Parasitic Flowering Plants. , (1969).
  22. Masumoto, N., et al. Three-dimensional reconstructions of haustoria in two parasitic plant species in the Orobanchaceae. Plant Physiology. 185 (4), 1429-1442 (2021).
  23. Calo, C. M., et al. A correlation analysis of Light Microscopy and X-ray MicroCT imaging methods applied to archaeological plant remains' morphological attributes visualization. Scientific Reports. 10 (1), 1-15 (2020).
  24. Brodersen, C. R., Roddy, A. B. New frontiers in the three-dimensional visualization of plant structure and function. American Journal of Botany. 103 (2), 184-188 (2016).
  25. Teixeira-Costa, L., Davis, C. C. Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology. 187 (1), 32-51 (2021).
  26. Simpson, B. B. Krameriaceae. Flora Neotropica Monograph. 49, (1989).
  27. Ruzin, S. E. . Plant microtechnique and microscopy. , (1999).
  28. Nikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., Davis, C. C. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers. Annals of Botany. 114, 233-242 (2014).
  29. Thorogood, C. J., Teixeira-Costa, L., Ceccantini, G., Davis, C., Hiscock, S. J. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. New Phytologist. 232 (3), 1159-1167 (2021).
  30. Largent, D., Johnson, D., Watling, R. . How to Identify Mushrooms to Genus III: Microscopic Features. , (1977).
  31. Busse, M., et al. Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography. Proceedings of the National Academy of Sciences of the United States of America. 115 (10), 2293-2298 (2018).
  32. Sperry, J. S., Donnelly, J. R., Tyree, M. T. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment. 11, 35-40 (1988).
  33. Calvin, C. L. Host-formed tyloses in vessels of the mistletoe Phoradendron (Viscaceae). IAWA Journal. 18 (2), 117-126 (1997).
  34. Teixeira-Costa, L., Ceccantini, G. Embolism increase and anatomical modifications caused by a parasitic plant. IAWA Journal. 36 (2), 138-151 (2015).
  35. Ellmore, G. S., Ewers, F. W. Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. American Journal of Botany. 73 (12), 1771-1774 (1986).
  36. Ellis, E. A. Staining sectioned biological specimens for transmission electron microscopy: Conventional and En bloc stains. Electron Microscopy: Methods and Protocols. 1117, 57-72 (2014).
  37. Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., Shackel, K. A. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiology. 154 (3), 1088-1095 (2010).
  38. Brodersen, C. R., et al. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytologist. 191 (4), 1168-1179 (2011).
  39. Lee, K., et al. Visualizing plant development and gene expression in three dimensions using optical projection tomography. Plant Cell. 18 (9), 2145-2156 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved