JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Environment

Udnyttelse af mikro-CT-scanning til at analysere parasitære plante-værtsinteraktioner

Published: January 12th, 2022

DOI:

10.3791/63423

1Harvard University Herbaria, 2Hanse-Wissenschaftskolleg

Micro-CT er et ikke-destruktivt værktøj, der kan analysere plantestrukturer i tre dimensioner. Denne protokol beskriver prøveforberedelsen for at udnytte mikro-CT til at analysere parasitisk plantestruktur og funktion. Forskellige arter bruges til at fremhæve fordelene ved denne metode, når de kombineres med specifikke præparater.

Micro-CT-scanning er blevet et etableret værktøj til at undersøge planters struktur og funktion. Dens ikke-destruktive karakter kombineret med muligheden for tredimensionel visualisering og virtuel sektionering har muliggjort ny og stadig mere detaljeret analyse af komplekse planteorganer. Interaktioner mellem planter, herunder mellem parasitære planter og deres værter, kan også udforskes. Imidlertid bliver prøveforberedelse før scanning afgørende på grund af interaktionen mellem disse planter, som ofte adskiller sig i vævsorganisation og sammensætning. Desuden skal den brede mangfoldighed af parasitiske blomstrende planter, der spænder fra stærkt reducerede vegetative kroppe til træer, urter og buske, overvejes under prøveudtagning, behandling og forberedelse af parasitværtsmateriale. Her beskrives to forskellige tilgange til introduktion af kontrastopløsninger i parasitten og/eller værtsplanterne med fokus på analyse af haustorium. Dette organ fremmer forbindelse og kommunikation mellem de to planter. Efter en simpel tilgang kan detaljer om haustoriumvævsorganisation udforskes tredimensionelt, som vist her for euphytoid-, vin- og misteltenparasitære arter. Valg af specifikke kontrastmidler og anvendelsesmetoder muliggør også detaljeret observation af endoparasitspredning i værtskroppen og påvisning af direkte fartøj-til-fartøj-forbindelse mellem parasit og vært, som vist her for en obligatorisk rodparasit. Således kan protokollen, der diskuteres her, anvendes på den brede mangfoldighed af parasitære blomstrende planter for at fremme forståelsen af deres udvikling, struktur og funktion.

Højopløselig røntgenmikrocomputertomografi (mikro-CT) er en billeddannelsesmetode, hvor flere røntgenbilleder (fremskrivninger) af en prøve registreres fra forskellige synsvinkler og senere bruges til at tilvejebringe en virtuel rekonstruktion af prøven1. Dette virtuelle objekt kan derefter analyseres, manipuleres og segmenteres, hvilket tillader ikke-destruktiv udforskning i tre dimensioner2. Oprindeligt designet til medicinske analyser og senere til industrielle applikationer, giver mikro-CT også fordelen ved at visualisere indre organer og væv uden behov for invasive procedurer3. Ligesom andre ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Valg af parasitisk planteprøve

  1. Saml hele parasitplanten haustorium, inklusive den vedhæftede værtsstamme / rod og segmenter af både proksimale og distale ender af det parasiterede værtsorgan; Den ideelle længde af hvert segment svarer til dobbelt diameter af haustorium.
    BEMÆRK: For lateral haustoria skal du inkludere en del af parasitmoderstammen / roden, hvorfra haustoriet blev dannet (figur 1A, B, D). For endoparasitter indsamles et .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Haustorium af parasitære planter er et komplekst organ, der omfatter forskellige væv og celletyper, der fletter sig sammen og forbinder med væv fra en anden plante, der anvendes som vært20. Micro-CT-scanning kan udnyttes til bedre at forstå denne komplekse struktur på en ikke-destruktiv og tredimensionel måde, når man analyserer både små (figur 1A-C) og store (figur 1D, E) haustoria.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Brugen af tungmetalopløsninger til forbedring af plantevævskontrast er blevet et afgørende skridt i prøveforberedelse til mikro-CT-analyse. Flere forbindelser, der almindeligvis er tilgængelige i plantemikromorfologilaboratorier, er blevet testet af Staedler et al., Der anbefaler at bruge phosphotungstate som det mest effektive middel til penetrerende prøver og øge kontrastindeks8. Resultater opnået her i analysen af haustorium af P. pubera bekræfter denne anbefaling. Med hensyn .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Jeg vil gerne takke Dr. Simone Gomes Ferreira (Microtomography Laboratory, University of Sao Paulo, Brasilien) og Dr. Greg Lin (Center for Nanoscale Systems, Harvard University, USA) for deres altoverskyggende hjælp og uundværlige brugeruddannelse til forskellige mikrotomografisystemer og dataanalysesoftware. Jeg takker også personalet på EEB Greenhouse ved University of Connecticut (USA), især Clinton Morse og Matthew Opel for at levere eksemplarerne af Viscum minimum. Dr. John Wenzel gav mulighed for og stor hjælp til prøveudtagning af Pyrularia pubera. MSc. Carolina Bastos, MSc. Yasmin Hirao og Talitha Motta hjalp meget med prøveudtagning af S....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
3D X-ray microscope (XRM) systemZeiss Versa 620used to scan Pyrularia pubera
3D X-ray microscope + A2:D22ZeissVersa 620Used for scanning the species P. pubera
CT-Pro 3D softwareNikonversion XT 3.1.11Used for three-dimensional reconstruction of scans
CT-Vox softwareBrukerversion 3.3.1Used for analyses and acquisition of images and videos
Dragonfly softwareObject Research Systems - ORSversionUsed for analyses and acquisition of images and videos
Glass vialsGlass Vials Inc. SEV2708C-FM-SPSold by VWR - USA; make sure that vials are able to withstand vacuum at ca. 10 psi
Inspect-XZeissversion XT 3.1.11Used for controlling the Nikon X-Tek HMXST225 system
Iodine solution 0.0282 NWR Chemicals BDHBDH7422-1Sold by VWR - USA
Lead Nitrate II PA 500 gVetec361.08Sold by SPLab
Microtomography scannerBrukerSkyscan1176Used for scanning the species C. americana, S. martianus, and S. fungiforme
Microtomography scannerNikonX-Tek HMXST225Used for scanning the species V. minimum
NRecon softwareBrukerversion 1.0.0Used for three-dimensional reconstruction
Phosphotungstic acid hydrate 3% in aqueous solutionElectron Microscopy Sciences101410-756Sold by VWR - USA
Plastic film (Parafilm)Heathrow ScientificPM996Sold by VWR - USA
Plastic IV bag 500 mLTaylor3478Sold by Fibra Cirurgica Produtos para Saude
PVC tubing 3/4''Nalge Nunc InternationalSC63013-164Sold by VWR - USA
Scanning systemNikon X-Tek HMXST225used to scan Viscum minimum
Scanning systemBruker Skyscan 1176used to scan C. americana
Scout-and-ScanTM softwareZeissversion 16Used for controlling the Zeiss Versa 620 system and for three-dimensional reconstruction of scans
Three-way valveToToTDMTWVS-5Sold by Amazon USA
Two-part syringeHSW Henke-Ject4850001000Used without the plunger
Vacuum chamberBinder80080-434Sold by VWR - USA; includes pump and connecting tubes
VG Studio Max softwareVolume Graphicsversion 3.0Used for analyses and acquisition of images and videos

  1. Stock, S. R. . Microcomputed tomography: Methodology and applications. , (2020).
  2. Hounsfield, G. N. Computerized transverse axial scanning (tomography): I. Description of system. British Journal of Radiology. 46 (552), 1016-1022 (1973).
  3. Dutilleul, P., Lafond, J. A. Editorial: Branching and rooting out with a CT Scanner: The why, the how, and the outcomes, present and possibly future pierre. Frontiers in Plant Science. 7 (41), 5-6 (2016).
  4. Metscher, B. D. Biological applications of X-ray microtomography: Imaging micro- anatomy, molecular expression and organismal diversity. Microscopy and Analysis. 27 (2), 13-16 (2013).
  5. Sakdinawat, A., Attwood, D. Nanoscale X-ray imaging. Nature Photonics. 4 (12), 840-848 (2010).
  6. Walton, L. A., et al. Morphological characterisation of unstained and intact tissue micro-architecture by X-ray computed micro- and nano-tomography. Scientific Reports. 5, 1-14 (2015).
  7. Lafond, J. A., Han, L., Dutilleul, P. Concepts and analyses in the ct scanning of root systems and leaf canopies: A timely summary. Frontiers in Plant Science. 6 (1111), 85-91 (2015).
  8. Staedler, Y. M., Masson, D., Schönenberger, J. Plant tissues in 3D via X-Ray Tomography: Simple contrasting methods allow high resolution imaging. PLoS ONE. 8 (9), 75295 (2013).
  9. Heeraman, D. A., Hopmans, J. W., Clausnitzer, V. Three dimensional imaging of plant roots in situ with X-ray Computed Tomography. Plant and Soil. 189, 167-179 (1997).
  10. Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., Inzé, D. Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science. 15 (8), 419-422 (2010).
  11. McElrone, A. J., Choat, B., Parkinson, D. Y., MacDowell, A. A., Brodersen, C. R. Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of Visualized Experiments. (74), e50162 (2013).
  12. Cochard, H., Delzon, S., Badel, E. X-ray microtomography (micro-CT): A reference technology for high-resolution quantification of xylem embolism in trees. Plant, Cell and Environment. 38 (1), 201-206 (2015).
  13. Bastos, C. L., Tamaio, N., Angyalossy, V. Unravelling roots of lianas: A case study in Sapindaceae. Annals of Botany. 118 (4), 733-746 (2016).
  14. da Cunha Neto, I. L., et al. Diversity, distribution, development, and evolution of medullary bundles in Nyctaginaceae. American Journal of Botany. 107 (5), 707-725 (2020).
  15. Milien, M., Renault-Spilmont, A. S., Cookson, S. J., Sarrazin, A., Verdeil, J. L. Visualization of the 3D structure of the graft union of grapevine using X-ray tomography. Scientia Horticulturae. 144, 130-140 (2012).
  16. Paya, A. M., Silverberg, J. L., Padgett, J., Bauerle, T. L. X-ray computed tomography uncovers root-root interactions: Quantifying spatial relationships between interacting root systems in three dimensions. Frontiers in Plant Science. 6 (274), 54-65 (2015).
  17. Teixeira-Costa, L., Ceccantini, G. C. T. Aligning microtomography analysis with traditional anatomy for a 3D understanding of the host-parasite interface - Phoradendron spp. Case study. Frontiers in Plant Science. 7, 1340 (2016).
  18. Lusic, H., Grinstaff, M. W. X-ray-computed tomography contrast agents. Chemical Reviews. 113 (3), 1641-1666 (2013).
  19. Těšitel, J. Functional biology of parasitic plants: a review. Plant Ecology and Evolution. 149 (1), 5-20 (2016).
  20. Teixeira-Costa, L. A living bridge between two enemies: Haustorium structure and evolution across parasitic flowering plants. Revista Brasileira de Botanica. 44 (1), 165-178 (2021).
  21. Kuijt, J. . The Biology of Parasitic Flowering Plants. , (1969).
  22. Masumoto, N., et al. Three-dimensional reconstructions of haustoria in two parasitic plant species in the Orobanchaceae. Plant Physiology. 185 (4), 1429-1442 (2021).
  23. Calo, C. M., et al. A correlation analysis of Light Microscopy and X-ray MicroCT imaging methods applied to archaeological plant remains' morphological attributes visualization. Scientific Reports. 10 (1), 1-15 (2020).
  24. Brodersen, C. R., Roddy, A. B. New frontiers in the three-dimensional visualization of plant structure and function. American Journal of Botany. 103 (2), 184-188 (2016).
  25. Teixeira-Costa, L., Davis, C. C. Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology. 187 (1), 32-51 (2021).
  26. Simpson, B. B. Krameriaceae. Flora Neotropica Monograph. 49, (1989).
  27. Ruzin, S. E. . Plant microtechnique and microscopy. , (1999).
  28. Nikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., Davis, C. C. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers. Annals of Botany. 114, 233-242 (2014).
  29. Thorogood, C. J., Teixeira-Costa, L., Ceccantini, G., Davis, C., Hiscock, S. J. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. New Phytologist. 232 (3), 1159-1167 (2021).
  30. Largent, D., Johnson, D., Watling, R. . How to Identify Mushrooms to Genus III: Microscopic Features. , (1977).
  31. Busse, M., et al. Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography. Proceedings of the National Academy of Sciences of the United States of America. 115 (10), 2293-2298 (2018).
  32. Sperry, J. S., Donnelly, J. R., Tyree, M. T. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment. 11, 35-40 (1988).
  33. Calvin, C. L. Host-formed tyloses in vessels of the mistletoe Phoradendron (Viscaceae). IAWA Journal. 18 (2), 117-126 (1997).
  34. Teixeira-Costa, L., Ceccantini, G. Embolism increase and anatomical modifications caused by a parasitic plant. IAWA Journal. 36 (2), 138-151 (2015).
  35. Ellmore, G. S., Ewers, F. W. Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. American Journal of Botany. 73 (12), 1771-1774 (1986).
  36. Ellis, E. A. Staining sectioned biological specimens for transmission electron microscopy: Conventional and En bloc stains. Electron Microscopy: Methods and Protocols. 1117, 57-72 (2014).
  37. Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., Shackel, K. A. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiology. 154 (3), 1088-1095 (2010).
  38. Brodersen, C. R., et al. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytologist. 191 (4), 1168-1179 (2011).
  39. Lee, K., et al. Visualizing plant development and gene expression in three dimensions using optical projection tomography. Plant Cell. 18 (9), 2145-2156 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved