Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The bi-directional mitotic kinesin-5 Cin8 accumulates in clusters that split and merge during their motility. Accumulation in clusters also changes the velocity and directionality of Cin8. Here, a protocol for motility assays with purified Cin8-GFP and analysis of motile properties of single molecules and clusters of Cin8 is described.

Abstract

The mitotic bipolar kinesin-5 motors perform essential functions in spindle dynamics. These motors exhibit a homo-tetrameric structure with two pairs of catalytic motor domains, located at opposite ends of the active complex. This unique architecture enables kinesin-5 motors to crosslink and slide apart antiparallel spindle microtubules (MTs), thus providing the outwardly-directed force that separates the spindle poles apart. Previously, kinesin-5 motors were believed to be exclusively plus-end directed. However, recent studies revealed that several fungal kinesin-5 motors are minus-end directed at the single-molecule level and can switch directionality under various experimental conditions. The Saccharomyces cerevisiae kinesin-5 Cin8 is an example of such bi-directional motor protein: in high ionic strength conditions single molecules of Cin8 move in the minus-end direction of the MTs. It was also shown that Cin8 forms motile clusters, predominantly at the minus-end of the MTs, and such clustering allows Cin8 to switch directionality and undergo slow, plus-end directed motility. This article provides a detailed protocol for all steps of working with GFP-tagged kinesin-5 Cin8, from protein overexpression in S. cerevisiae cells and its purification to in vitro single-molecule motility assay. A newly developed method described here helps to differentiate between single molecules and clusters of Cin8, based on their fluorescence intensity. This method enables separate analysis of motility of single molecules and clusters of Cin8, thus providing the characterization of the dependence of Cin8 motility on its cluster size.

Introduction

A large number of motility events within eukaryotic cells are mediated by the function of molecular motor proteins. These motors move along the cytoskeletal filaments, actin filaments, and microtubules (MTs), and convert the chemical energy of ATP hydrolysis into kinetic and mechanical forces required to drive biological motility within cells. The MT-based S. cerevisiae Cin8 is a bipolar, homotetrameric kinesin-5 motor protein that crosslinks and slides spindle MTs apart1. Cin8 performs essential functions during mitosis, in spindle assembly2,3,4

Protocol

1. Preparation of buffers and reagents

  1. Buffers
    1. -Leu aa dropout mix: Mix 2 g each of Adenine, Uracil, Tryptophan, Histidine, Lysine, and Methionine and store at room temperature.
    2. Yeast selective medium with raffinose (1 L): Mix 6.7 g of yeast nitrogen base (with ammonium sulfate), 2 g of -Leu aa dropout mix, and 20 g of raffinose in double-distilled water by stirring (without heating) until fully dissolved. Using a 0.22 µm filter, filter the solution into a sterile .......

Representative Results

The experiment aims to investigate the motility characteristics of bi-directional motor protein Cin8 of different cluster sizes on single MTs. Representative motility of Cin8-GFP is also evident from the kymographs in Figure 5A, where the spatial position of the motor over time is shown.

For the analysis of the motile properties of Cin8-GFP, first, the cluster size is assigned (step 4.3) to each MT-attached motile Cin8-GFP particle, and then the position of the ex.......

Discussion

In this work, a protocol for single-molecule motility assay with the bi-directional kinesin-5 Cin8 and the motility analysis are presented. The full-length Cin818 including the native nuclear localization signal (NLS) at the C-terminal has been purified from the native host S. cerevisiae. As the Cin8 is a nuclear motor protein, grinding the S. cerevisiae cells under liquid nitrogen is found to be the most efficient method for cell lysis. After lysis, by combining metal affinity a.......

Acknowledgements

This research was supported in part by the Israel Science Foundation grant (ISF-386/18) and the Israel Binational Science Foundation grant (BSF-2019008), awarded to L.G.

....

Materials

NameCompanyCatalog NumberComments
AdenineFORMEDIUMDOC0230
ATPSigmaA7699
Biotinylated-BSASigmaA8549
CaseinSigmaC7078
Catalase (C40)SigmaC40
Creatine-KinaseSigmaC3755
Dithiothreitol (DTT)SigmaD0632
EDTASigmaE5134
EGTASigmaE4378
Fluorescence filter set for GFPChroma49002: ET-EGFP (FITC/Cy2)
Fluorescence filter set for RhodamineChroma49004: ET-CY3/TRITC
Fluorescence inverted microscopeZeissAxiovert 200M
GalactoseTivan BiotechGAL02
GlucoseSigmaG8270
Glucose OxidaseSigmaG7141
GlycerolSigmaG5516
GlycylGlycineMerckG0674
GMPCPPJana BioscienceNu-405L
GTBCytoskeletonBST01-010
GTPSigmaG8877
HistidineDuchefa BiochemieH0710.0100
ImageJ-FIJI softwarehttps://imagej.net/plugins/trackmate/version 2.1.0/1.53c; Java 1.8.0_172 [64-bit] for Windows 10
ImidazoleSigmaI0125
InstantBlue Coomassie Protein StainAbcamab119211
LensZeiss100x/1.4 oil DIC objective
LysineFORMEDIUMDOC0161
Magnesium ChlorideSigmaM8266
MethionineDuchefa BiochemieM0715.0100
NeoAndor TechnologiessCMOS camera
NeutraAvidinLifeA2666
Ni-NTA AgaroseInvitrogenR901-15
Phospho-CreatineSigmaP1937
PipesSigmaP1851
Pluronic acid F-127 (poloxamer)SigmaP2443
Potassium ChlorideSigmaP9541
RaffinoseTivan BiotechRAF01
Size Exclusion chromatography instumentGE HealthcareAKTA Pure
SpectrophotometerThermoFisher ScientificNanoDrop
Superose-6 10/300 GLGE Healthcare17-5172-01
TrisRoshe10708976001
Triton X-100SigmaT8787
TryptophanDuchefa BiochemieT0720.0100
Tubulin proteinCytoskeletonT240
Tubulin, biotinylatedCytoskeletonT333P
Tubulin, TRITC RhodamineCytoskeletonTL530M
UracilSigmaU0750-100G
Yeast nitrogen baseFORMEDIUMCYN0401S
α-GFP antibodySanta Cruz BiotechnologySC8036
β-mercaptoethanolSigmaM3148

References

  1. Singh, S. K., Pandey, H., Al-Bassam, J., Gheber, L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cellular and Molecular Life Sciences. 75 (10), 1757-1771 (2018).
  2. Hoyt, M. A., He, L., Totis, L., Saunders, W. S.

Explore More Articles

Kinesin 5 Cin8Bidirectional Motor ProteinSingle molecule Motility AssaySaccharomyces CerevisiaeGFP type Full length Cin8Protein PurificationNuclear ProteinsFluorescent Particles

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved