A subscription to JoVE is required to view this content. Sign in or start your free trial.
The bi-directional mitotic kinesin-5 Cin8 accumulates in clusters that split and merge during their motility. Accumulation in clusters also changes the velocity and directionality of Cin8. Here, a protocol for motility assays with purified Cin8-GFP and analysis of motile properties of single molecules and clusters of Cin8 is described.
The mitotic bipolar kinesin-5 motors perform essential functions in spindle dynamics. These motors exhibit a homo-tetrameric structure with two pairs of catalytic motor domains, located at opposite ends of the active complex. This unique architecture enables kinesin-5 motors to crosslink and slide apart antiparallel spindle microtubules (MTs), thus providing the outwardly-directed force that separates the spindle poles apart. Previously, kinesin-5 motors were believed to be exclusively plus-end directed. However, recent studies revealed that several fungal kinesin-5 motors are minus-end directed at the single-molecule level and can switch directionality under various experimental conditions. The Saccharomyces cerevisiae kinesin-5 Cin8 is an example of such bi-directional motor protein: in high ionic strength conditions single molecules of Cin8 move in the minus-end direction of the MTs. It was also shown that Cin8 forms motile clusters, predominantly at the minus-end of the MTs, and such clustering allows Cin8 to switch directionality and undergo slow, plus-end directed motility. This article provides a detailed protocol for all steps of working with GFP-tagged kinesin-5 Cin8, from protein overexpression in S. cerevisiae cells and its purification to in vitro single-molecule motility assay. A newly developed method described here helps to differentiate between single molecules and clusters of Cin8, based on their fluorescence intensity. This method enables separate analysis of motility of single molecules and clusters of Cin8, thus providing the characterization of the dependence of Cin8 motility on its cluster size.
A large number of motility events within eukaryotic cells are mediated by the function of molecular motor proteins. These motors move along the cytoskeletal filaments, actin filaments, and microtubules (MTs), and convert the chemical energy of ATP hydrolysis into kinetic and mechanical forces required to drive biological motility within cells. The MT-based S. cerevisiae Cin8 is a bipolar, homotetrameric kinesin-5 motor protein that crosslinks and slides spindle MTs apart1. Cin8 performs essential functions during mitosis, in spindle assembly2,3,4
1. Preparation of buffers and reagents
The experiment aims to investigate the motility characteristics of bi-directional motor protein Cin8 of different cluster sizes on single MTs. Representative motility of Cin8-GFP is also evident from the kymographs in Figure 5A, where the spatial position of the motor over time is shown.
For the analysis of the motile properties of Cin8-GFP, first, the cluster size is assigned (step 4.3) to each MT-attached motile Cin8-GFP particle, and then the position of the ex.......
In this work, a protocol for single-molecule motility assay with the bi-directional kinesin-5 Cin8 and the motility analysis are presented. The full-length Cin818 including the native nuclear localization signal (NLS) at the C-terminal has been purified from the native host S. cerevisiae. As the Cin8 is a nuclear motor protein, grinding the S. cerevisiae cells under liquid nitrogen is found to be the most efficient method for cell lysis. After lysis, by combining metal affinity a.......
This research was supported in part by the Israel Science Foundation grant (ISF-386/18) and the Israel Binational Science Foundation grant (BSF-2019008), awarded to L.G.
....Name | Company | Catalog Number | Comments |
Adenine | FORMEDIUM | DOC0230 | |
ATP | Sigma | A7699 | |
Biotinylated-BSA | Sigma | A8549 | |
Casein | Sigma | C7078 | |
Catalase (C40) | Sigma | C40 | |
Creatine-Kinase | Sigma | C3755 | |
Dithiothreitol (DTT) | Sigma | D0632 | |
EDTA | Sigma | E5134 | |
EGTA | Sigma | E4378 | |
Fluorescence filter set for GFP | Chroma | 49002: ET-EGFP (FITC/Cy2) | |
Fluorescence filter set for Rhodamine | Chroma | 49004: ET-CY3/TRITC | |
Fluorescence inverted microscope | Zeiss | Axiovert 200M | |
Galactose | Tivan Biotech | GAL02 | |
Glucose | Sigma | G8270 | |
Glucose Oxidase | Sigma | G7141 | |
Glycerol | Sigma | G5516 | |
GlycylGlycine | Merck | G0674 | |
GMPCPP | Jana Bioscience | Nu-405L | |
GTB | Cytoskeleton | BST01-010 | |
GTP | Sigma | G8877 | |
Histidine | Duchefa Biochemie | H0710.0100 | |
ImageJ-FIJI software | https://imagej.net/plugins/trackmate/ | version 2.1.0/1.53c; Java 1.8.0_172 [64-bit] for Windows 10 | |
Imidazole | Sigma | I0125 | |
InstantBlue Coomassie Protein Stain | Abcam | ab119211 | |
Lens | Zeiss | 100x/1.4 oil DIC objective | |
Lysine | FORMEDIUM | DOC0161 | |
Magnesium Chloride | Sigma | M8266 | |
Methionine | Duchefa Biochemie | M0715.0100 | |
Neo | Andor Technologies | sCMOS camera | |
NeutraAvidin | Life | A2666 | |
Ni-NTA Agarose | Invitrogen | R901-15 | |
Phospho-Creatine | Sigma | P1937 | |
Pipes | Sigma | P1851 | |
Pluronic acid F-127 (poloxamer) | Sigma | P2443 | |
Potassium Chloride | Sigma | P9541 | |
Raffinose | Tivan Biotech | RAF01 | |
Size Exclusion chromatography instument | GE Healthcare | AKTA Pure | |
Spectrophotometer | ThermoFisher Scientific | NanoDrop | |
Superose-6 10/300 GL | GE Healthcare | 17-5172-01 | |
Tris | Roshe | 10708976001 | |
Triton X-100 | Sigma | T8787 | |
Tryptophan | Duchefa Biochemie | T0720.0100 | |
Tubulin protein | Cytoskeleton | T240 | |
Tubulin, biotinylated | Cytoskeleton | T333P | |
Tubulin, TRITC Rhodamine | Cytoskeleton | TL530M | |
Uracil | Sigma | U0750-100G | |
Yeast nitrogen base | FORMEDIUM | CYN0401S | |
α-GFP antibody | Santa Cruz Biotechnology | SC8036 | |
β-mercaptoethanol | Sigma | M3148 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved