Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe improvements to a standard method for measuring cellular traction forces, based on microcontact printing with a single subtractive patterning step of dot arrays of extracellular matrix proteins on soft hydrogels. This method allows for simpler and more consistent fabrication of island patterns, essential for controlling cell cluster shape.

Abstract

Micropattern traction microscopy allows control of the shape of single cells and cell clusters. Furthermore, the ability to pattern at the micrometer length scale allows the use of these patterned contact zones for the measurement of traction forces, as each micropatterned dot allows for the formation of a single focal adhesion that then deforms the soft, underlying hydrogel. This approach has been used for a wide range of cell types, including endothelial cells, smooth muscle cells, fibroblasts, platelets, and epithelial cells.

This review describes the evolution of techniques that allow the printing of extracellular matrix proteins onto polyacrylamide hydrogels in a regular array of dots of prespecified size and spacing. As micrometer-scale patterns are difficult to directly print onto soft substrates, patterns are first generated on rigid glass coverslips that are then used to transfer the pattern to the hydrogel during gelation. First, the original microcontact printing approach to generate arrays of small dots on the coverslip is described. A second step that removes most of the pattern to leave islands of small dots is required to control the shapes of cells and cell clusters on such arrays of patterned dots.

Next, an evolution of this approach that allows for the generation of islands of dots using a single subtractive patterning step is described. This approach is greatly simplified for the user but has the disadvantage of a decreased lifetime for the master mold needed to make the patterns. Finally, the computational approaches that have been developed for the analysis of images of displaced dots and subsequent cell-generated traction fields are described, and updated versions of these analysis packages are provided.

Introduction

Most cell phenotypes exert traction forces on their environment. These traction forces are generated by a cell's contractile cytoskeleton, which is a network of actin and myosin, and other filamentous biopolymers and crosslinking proteins1,2,3,4. Forces generated within the cell can be transmitted to the extracellular environment or adjacent cells, primarily via transmembrane proteins such as integrins and cadherins, respectively5,6. How a cell spreads or contracts-and the magnit....

Protocol

1. Creation of silicone masters

NOTE: Most of the process of the design, creation, and troubleshooting of silicon masters for the repeated molding of PDMS stamps has been covered previously21, so only key differences in this new approach will be described here.

  1. Create the design for the photomask using AutoCAD or similar design software. Coat one side of the photomask, a thin piece of glass, with a thin layer of chrome to control UV light sc.......

Representative Results

PAA hydrogels with the Young's modulus of E = 3.6 kPa and the Poisson's ratio of ν = 0.445 were made for use by this subtractive micropatterning method. The hydrogels were made to be ~100 µm thick, which allows them to be imaged with the imaging setup used here while also preventing the cells from sensing the rigid coverslip below the gel, which would cause problems in studies focused on cellular rigidity sensing23,33. Gels of .......

Discussion

An improved method of indirectly patterning PAA hydrogels is described in this paper. This approach builds on methods that have been used previousely20,35,36,37,38,39,40,41,42. The primary change is that PDMS stamps are no.......

Acknowledgements

The authors would like to thank Dr. Paul Barbone from the Boston University Department of Mechanical Engineering for helpful discussions and assistance with data analysis. This study was supported by NSF grant CMMI-1910401.

....

Materials

NameCompanyCatalog NumberComments
(3-aminopropyl)trimethoxysilaneSigma Aldrich#281778
1.5 mL Microcentrifuge tubeFisher Scientific#05-408-129
15 mL conical tubeFisher Scientific#05-539-12
4 x 4 in 0.060 Quartz LR Chrome PhotomaskAdvance Reproductions CorporationN/ACustom-designed mask
6 Well PlatesFisher Scientific#07-200-83
AcetoneFisher Scientific#A18P-4
Acrylamide Solution, 40%Sigma Aldrich#A4058
AlexaFluor 488Thermo Fisher#A20000
Aminonium PersulfateFisher Scientific#BP179-25
BisacrylamideFisher Scientific#PR-V3141
EthanolGreenfield Global#111000200C1GL
Glass Coverslips, 25 mm roundFisher Scientifc#12-545-102
Glass Coverslips, 30 mm roundWarner#64-1499
Hamamatsu ORCA-R2 CameraHamamatsu#C10600-10B
Human PlasmaValley Biomedical#HP1051PUsed to isolate fibronectin
Hydrochloric Acid, 1.0 NMillipore Sigma#1.09057
ImageJWayne Rasband#1.53n
Interchangeable Coverslip Dish SetBioptechs#190310-35
Kim WipesFisher Scientific#06-666-11C
Mask AlingerKarl Suss#MA6
Matlab 2021Mathworks#R2021a
MetaMorph BasicMolecular Devices#v7.7.1.0
N-hydroxysuccinimide esterSigma Aldrich#130672-5G
NucBlue Live Cell StainThermo Fisher#R37605
Olympus IX2-ZDC Inverted MicroscopeOlympus#IX81
PD-10 Desalting ColumnsGE Healthcare#52-1308-00
Photoresist Spinner HoodHeadway Research#PWM32
Plasma CleanerHarrick#PDC-001
Plasma EtcherTePla#M4L
Prior Lumen 200Pro Light SourcePrior Scientific#L200
Silicon Wafers, 100 mmUniversity Wafer#809
SU-8 2005Kayaku Advanced Materials Inc.#NC9463827
SU-8 DeveloperKayaku Advanced Materials Inc.#NC9901158
Sylgard 184 Silicone ElastomerEssex Brownell#DC-184-1.1
TetramethylethylenediamineFisher Scientific#BP150-20
Trichloro(1H,1H,2H,2H-perfluorooctyl)silaneSigma Aldrich#448931
UAPON-40XW340 ObjectiveOlympus#N2709300
UV Flood ExposureNewport#69910
Wafer Carrier Tray, 110 x 11 mmTed Pella, Inc.#19395-40

References

  1. Pelham, R. J., Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America. 94 (25), 13661-13665 (1997).
  2. Discher, D. E., Janmey, P., Wang, Y. L.

Explore More Articles

Pattern GenerationMicropattern Traction MicroscopyPDMSMaster MoldCoverslipsPlasma TreatmentFluorescent Labeled Protein3 APTMSGlutaraldehyde

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved