JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Fiber Type and Subcellular-Specific Analysis of Lipid Droplet Content in Skeletal Muscle

Published: June 8th, 2022

DOI:

10.3791/63718

1Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 2Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla

Increasing evidence indicates that excessive infiltration of lipids inside skeletal muscle results in lipotoxicity and diabetes. Here, we present a complete protocol, including tissue processing, staining with Bodipy, image acquisition, and analysis, to quantify the size, density, and subcellular distribution of lipid droplets in a fiber-type specific manner.

Skeletal muscle lipid infiltration, known as myosteatosis, increases with obesity and ageing. Myosteatosis has also recently been discovered as a negative prognostic factor for several other disorders such as cardiovascular disease and cancer. Excessive lipid infiltration decreases muscle mass and strength. It also results in lipotoxicity and insulin resistance depending on total intramyocellular lipid content, lipid droplet (LD) morphology, and subcellular distribution. Fiber type (oxidative vs glycolytic) is also important, since oxidative fibers have a greater capacity to utilize lipids. Because of their crucial implications in pathophysiology, in-depth studies on LD dynamics and function in a fiber type-specific manner are warranted.

Herein, a complete protocol is presented for the quantification of intramyocellular lipid content and analysis of LD morphology and subcellular distribution in a fiber type-specific manner. To this end, serial muscle cryosections were stained with the fluorescent dye Bodipy and antibodies against myosin heavy chain isoforms. This protocol enables the simultaneous processing of different muscles, saving time and avoiding possible artifacts and, thanks to a personalized macro created in Fiji, the automatization of LD analysis is also possible.

Skeletal muscle lipid infiltration, known as myosteatosis, increases with obesity and ageing. Myosteatosis is negatively correlated with muscle mass and strength and with insulin sensitivity1. Moreover, recent studies indicate that the degree of myosteatosis could be used as a prognostic factor for other conditions such as cardiovascular disease2, non-alcoholic fatty liver disease3, or cancer4. Lipids can accumulate in skeletal muscle between muscle fibers as extramyocellular lipids or within the fibers, as intramyocellular lipids (IMCLs). IMCLs are predominantly stored as ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures conducted on mice were approved by the Ethical Committee for Animal Experimentation from the Medical Sector at Université Catholique de Louvain (2019/UCL/MD/013).

1. Dissection and preparation of the samples for freezing

  1. Label a 3 mm thick piece of cork for each pair of muscles.
  2. Through a small incision made with a blade on the center of the cork, insert perpendicularly a rectangular piece of rigid plastic (0.5 cm W, 1 cm H) that will .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol described herein provides an efficient method to easily quantify LDs in a fiber type and subcellular-specific manner. It shows how, by freezing together two muscles of similar size, such as the EDL and the soleus, the time and resources spent on the following steps are reduced by half.

A complete protocol is provided for immunostaining, image acquisition, and analysis of the different MyHC isoforms expressed in adult mouse muscles. This protocol is based on the one first designed .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol detailed here describes an efficient method to quantify LDs tagged with Bodipy on a fiber-type- and subcellular-specific basis. In recent years, classical lipid dyes, such as ORO or Sudan Black B, have been substituted with a new array of cell-permeable, lipophilic, fluorescent dyes that bind to neutral lipids (e.g., Bodipy). Available as different conjugates, Bodipy has been proven very effective at tagging LDs to study their morphology, dynamics, and interaction with other organelles, not only in different.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by grants from the Fonds National de la Recherche Scientifique (FNRS-Crédit de Recherche J.0022.20) and the Société Francophone du Diabète (SFD-Roche Diabetes Care).C.M.S. is the recipient of a Ph.D. fellowship from the FRIA (FNRS). M.A.D.-L.d.C. received a fellowship from the Wallonie-Bruxelles International Excellence Program.

The authors thank Alice Monnier for her contribution to the development of this protocol and Caroline Bouzin for her expertise and technical help in the image acquisition process. We also thank the 2IP-IREC imaging platform for access to the cryostat and ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Equipment
AxioCam 506 mono 6 Mpix cameraZeiss
AxioCam MRm 1.4MPix CCD camera Zeiss
Chemical hoodPotteau LaboEN-14175
Confocal microscopeZeissLSM800
Cork discs (ø 20 mm, 3 mm thick) Electron Microscopy Sciences63305
Cryo-GlovesTempshield16072252
Cryostat Thermo Scientific Microm Cryo Star HM 560
Dissecting Stereo Microscope SMZ745Nikon
Dry Ice
Dumont ForcepsF.S.T11295-10
Epifluorescence microscopeZeissAxioImage-Apotome Z1
Extra Fine Bonn ScissorsF.S.T14084-08
FisherBrand Disposable Base Molds (0.7 x 0.7 cm)ThermoFisher22-363-552Used to cut a piece to hold the muscle on the cork for freezing
Glass petri dish (H 25 mm, ø 150 mm)BRAND Petri dish, MERKBR455751Used to place the muscles on ice during dissection
ImmEdge Hydrophobic barrier PAP PenVector LabsH-4000Used to create an hidrophobic barrier around the muscle sections
IncubatorMMM MedcenterIncucell 707 
Microscope Cover Glasses (24x50 mm)Assistent 40990151
Microscope Slide Boxes Kartell278Used as humid chambers for immunohistochemistry
Neck holderLinie zwoSB-035X-02Used as strap to hold the stainless steel tumbler
No 15 Sterile Carbon Steel Scalpel BladeSwann-Morton0205
Paint brushesVan BleiswijckAmazon B07W7KJQ2XUsed to handle cryosections
Permanent Marker Pen BlackKlinipath/VWR98307-RUsed to label slides
Pierce Fixation ForcepsF.S.T18155-13
Polystyrene Box H 12 cm x L 25 cm x W 18 cm, used as a liquid nitrogen container and to transport the samples to the cryostat
Scalpel Handle, 125 mm (5"), No. 3AesculapBB073R
Stainless Steel Cup 10oz EboxerB07GFCBPFHTumbler to fill with isopentene for muscle freezing
Superfrost Ultra Plus slidesThermoFisherJ1800AMNZ
Surgical tweezers 1/2 teethMedische Vakhandel1303152Also called "Rat teeth tweezers"
Vannas Spring Scissors - 3 mm Cutting EdgeF.S.T15000-00
Weighing boatsVWR international611-2249
Whole-Slide Scanner for FluorescenceZeissAxio Scan.Z1
Reagents
Alexa Fluor 405 Goat Anti-Mouse IgG2bSigma-AldrichSAB4600477Used at a final concentration of 1:500
Alexa Fluor 488 Goat Anti-Mouse IgG1ThermoFisherA-21121Used at a final concentration of 1:500
Alexa Fluor 568 Goat Anti-Mouse IgMAbcamab175702Used at a final concentration of 1:1,000
Alexa Fluor 647 goat anti rat-IgG (H+L) secondary antibodyThermoFisherA-21247Used at a final concentration of 1:500
BODIPY-493/503 (4,4-difluoro-1,3,5,7,8-pentametil-4-bora-3a,4a-diaza-s-indaceno)ThermoFisherD3922Used at a final concentration of 1 µg/mL
BODIPY-558/568 C12 (4,4-Difluoro-5-(2-Thienyl)-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid)ThermoFisherD3835Used at a final concentration of 1 µg/mL
DAPI (4',6-diamidino-2-phenylindole)ThermoFisherD1306Used at a final concentration of 0.5 µg/mL
Dimethyl Sulfoxide (DMSO)Sigma-AldrichD-8418Used to solve Bodipy for the 1 mg/mL stock solution. CAUTION: Toxic and flammable. Vapors may cause irritation. Manipulate in a fume hood. Avoid direct contact with skin. Wear rubber gloves, protective eye goggles.
Formaldehyde solution 4%, buffered, pH 6.9Sigma-Aldrich1004969011CAUTION: May cause an allergic skin reaction. Suspected of causing genetic defects. May cause cancer. Manipulate in a fume hood. Avoid direct contact with skin. Wear rubber gloves, protective eye goggles.
Isopentane GPR RectaPurVWR international24872.298CAUTION: Extremely flammable liquid and vapor. May be fatal if swallowed and enters airways. May cause drowsiness or dizziness. Repeated exposure may cause skin dryness or cracking. Wear protective gloves/protective clothing/eye protection/face protection.
Liquid NitrogenCAUTION:  Extremely cold. Wear gloves. Handle slowly to minimize boiling and splashing and in well ventilated areas. Use containers designed for low-temperature liquids.
Mouse on mouse Blocking Reagent Vector LabsMKB-2213-1Used at concentration of 1:30
Myosin heavy chain Type I (BA-D5-s Primary Antibody) Gene: MYH7, monoclonal bovine anti mouse IgG2bDSHB University of IowaBA-D5-supernatantUsed at a final concentration of 1:10
Myosin heavy chain Type IIA (SC-71-s Primary Antibody) Gene:  MYH2, Monoclonal bovine anti mouse IgG1DSHB University of IowaSC-71-supernatantUsed at a final concentration of 1:10
Myosin heavy chain Type IIX (6H1-s Primary Antibody), Gene:  MYH1, Monoclonal rabbit anti mouse IgMDevelopmental Studies Hybridoma Bank, University of Iowa6H1-supernatantUsed at a final concentration of 1:5
Normal Goat Serum (NGS)Vector LabsS-1000
PBS 0.1 MCommonly used on histology laboratories
ProLong Gold Antifade MountantInvitrogen P36930
Rat anti-Laminin-2 (α-2 Chain) primary antibody (monoclonal)Sigma-AldrichL0663Used at a final concentration of 1:1,000
Tissue-Tek O.C.T compoundSakura 4583
Software
Adobe Illustrator CCAdobe Inc.Used to design the figures
Adobe PhotoshopAdobe Inc.Confocal software
BioRenderhttps://biorender.com/Used to design the figures
Fiji/ImageJhttps://imagej.net/software/fiji/Used to analyse the acquired images
Microsoft PowerPointMicrosoftUsed to reconstruct the histology of the whole muscle after scanning the fiber types
Zen Blue 2.6ZeissUsed to reconstruct the histology of the whole muscle after scanning the fiber types

  1. Correa-de-Araujo, R., et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the National Institute on Aging. Frontiers in Physiology. 11, 963 (2020).
  2. Miljkovic, I., et al. Greater skeletal muscle fat infiltration is associated with higher all-cause and cardiovascular mortality in older men. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 70 (9), 1133-1140 (2015).
  3. Nachit, M., et al. Myosteatosis rather than sarcopenia associates with non-alcoholic steatohepatitis in non-alcoholic fatty liver disease preclinical models. Journal of Cachexia, Sarcopenia, and Muscle. 12 (1), 144-158 (2021).
  4. Aleixo, G. F. P., et al. Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Critical Reviews in Oncology/Hematolgoy. 145, 102839 (2020).
  5. Gemmink, A., Schrauwen, P., Hesselink, M. K. C. Exercising your fat (metabolism) into shape: a muscle-centred view. Diabetologia. 63 (8), 1453-1463 (2020).
  6. van Loon, L. J. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. Journal of Applied Physiology. 97 (4), 1170-1187 (2004).
  7. Coen, P. M., Goodpaster, B. H. Role of intramyocelluar lipids in human health. Trends in Endocrinology and Metabolism. 23 (8), 391-398 (2012).
  8. Seibert, J. T., Najt, C. P., Heden, T. D., Mashek, D. G., Chow, L. S. Muscle lipid droplets: cellular signaling to exercise physiology and beyond. Trends in Endocrinology and Metabolism. 31 (12), 928-938 (2020).
  9. Bergman, B. C., Goodpaster, B. H. Exercise and muscle lipid content, composition, and localization: influence on muscle insulin sensitivity. Diabetes. 69 (5), 848-858 (2020).
  10. Nielsen, J., Christensen, A. E., Nellemann, B., Christensen, B. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism. 313 (6), 721-730 (2017).
  11. Covington, J. D., et al. Intramyocellular lipid droplet size rather than total lipid content is related to insulin sensitivity after 8 weeks of overfeeding. Obesity (Silver Spring). 25 (12), 2079-2087 (2017).
  12. Bosma, M. Lipid droplet dynamics in skeletal muscle). Experimental Cell Research. 340 (2), 180-186 (2016).
  13. Nielsen, J., et al. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 298 (3), 706-713 (2010).
  14. Ferreira, R., et al. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics. 10 (17), 3142-3154 (2010).
  15. Barrett, J. S., Whytock, K. L., Strauss, J. A., Wagenmakers, A. J. M., Shepherd, S. O. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Applied Physiology, Nutrition and Metabolism. , 1-14 (2022).
  16. Daemen, S., et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete's paradox. Molecular Metabolism. 17, 71-81 (2018).
  17. Bredella, M. A., Ghomi, R. H., Thomas, B. J., Miller, K. K., Torriani, M. Comparison of 3.0 T proton magnetic resonance spectroscopy short and long echo-time measures of intramyocellular lipids in obese and normal-weight women. Journal of Magnetic Resonance Imaging. 32 (2), 388-393 (2010).
  18. Schrauwen-Hinderling, V. B., Hesselink, M. K., Schrauwen, P., Kooi, M. E. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring). 14 (3), 357-367 (2006).
  19. De Bock, K., et al. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. American Journal of Physiology-Endocrinology and Metabolism. 293 (1), 428-434 (2007).
  20. Koopman, R., Schaart, G., Hesselink, M. K. Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochemistry and Cell Biology. 116 (1), 63-68 (2001).
  21. Gueugneau, M., et al. Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. Journal of Gerontology Series A: Biomedical Sciences and Medical Sciences. 70 (5), 566-576 (2015).
  22. Gemmink, A., et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids. 1863 (11), 1423-1432 (2018).
  23. Spangenburg, E. E., Pratt, S. J. P., Wohlers, L. M., Lovering, R. M. Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. Journal of Biomedicine and Biotechnology. 598358, (2011).
  24. Prats, C., et al. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers. PLoS One. 8 (10), 77774 (2013).
  25. Strauss, J. A., Shepherd, D. A., Macey, M., Jevons, E. F. P., Shepherd, S. O. Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye. Histochemistry and Cell Biology. 154 (4), 369-382 (2020).
  26. Shepherd, S. O., et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. Journal of Physiology. 591 (3), 657-675 (2013).
  27. Whytock, K. L., et al. A 7-day high-fat, high-calorie diet induces fibre-specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle. Journal of Physiology. 598 (6), 1151-1167 (2020).
  28. Wang, C., Yue, F., Kuang, S. Muscle histology characterization using h&e staining and muscle fiber type classification using immunofluorescence staining. Bio-Protocol. 7 (10), (2017).
  29. Meng, H., et al. Tissue triage and freezing for models of skeletal muscle disease. Journal of Visualized Experiments: JoVE. (89), e51586 (2014).
  30. Kumar, A., Accorsi, A., Rhee, Y., Girgenrath, M. Do's and don'ts in the preparation of muscle cryosections for histological analysis. Journal of Visualized Experiments: JoVE. (99), e52793 (2015).
  31. Leiva-Cepas, F., et al. Laboratory methodology for the histological study of skeletal muscle. Archivos de Medicina del Deporte. 35 (186), 254-262 (2018).
  32. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  33. Schiaffino, S., et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. Journal of Muscle Research & Cell Motility. 10 (3), 197-205 (1989).
  34. Komiya, Y., et al. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis. Journal of Muscle Research & Cell Motility. 38 (2), 163-173 (2017).
  35. Andrich, D. E., et al. Altered lipid metabolism impairs skeletal muscle force in young rats submitted to a short-term high-fat diet. Frontiers in Physiology. 9, 1327 (2018).
  36. Schiaffino, S. Fibre types in skeletal muscle: a personal account. Acta Physiologica. 199 (4), 451-463 (2010).
  37. Bloemberg, D., Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 7 (4), 35273 (2012).
  38. Gemmink, A., et al. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans. Diabetologia. 59 (5), 1040-1048 (2016).
  39. Askinas, C., et al. . Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS). , (2018).
  40. Morén, B., et al. EHD2 regulates adipocyte function and is enriched at cell surface-associated lipid droplets in primary human adipocytes. Molecular Biology of the Cell. 30 (10), 1147-1159 (2019).
  41. Benador, I. Y., et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metabolism. 27 (4), 869-885 (2018).
  42. de la Rosa Rodriguez, M. A., et al. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Molecular Metabolism. 47, 101168 (2021).
  43. Jevons, E. F. P., Gejl, K. D., Strauss, J. A., Ørtenblad, N., Shepherd, S. O. Skeletal muscle lipid droplets are resynthesized before being coated with perilipin proteins following prolonged exercise in elite male triathletes. American Journal of Physiology-Endocrinology and Metabolism. 318 (3), 357-370 (2020).
  44. Ohsaki, Y., Maeda, T., Fujimoto, T. Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins. Histochemistry and Cell Biology. 124 (5), 445-452 (2005).
  45. Prats, C., et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. Journal of Lipid Research. 47 (11), 2392-2399 (2006).
  46. Listenberger, L. L., Brown, D. A. Fluorescent detection of lipid droplets and associated proteins. Current Protocols in Cell Biology. , (2007).
  47. Xue, Y., Lim, S., Bråkenhielm, E., Cao, Y. Adipose angiogenesis: quantitative methods to study microvessel growth, regression and remodeling in vivo. Nature Protocols. 5 (5), 912-920 (2010).
  48. Muliyil, S., et al. ADAM17-triggered TNF signalling protects the ageing Drosophila retina from lipid droplet-mediated degeneration. The EMBO Journal. 39 (17), 104415 (2020).
  49. Yan, Q., et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discovery. 4, 2 (2018).
  50. Coassin, S., et al. Investigation and functional characterization of rare genetic variants in the adipose triglyceride lipase in a large healthy working population. PLoS Genetics. 6 (12), 1001239 (2010).
  51. Daemen, S., van Zandvoort, M., Parekh, S. H., Hesselink, M. K. C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism. 5 (3), 153-163 (2016).
  52. Chen, Q., et al. Rab8a deficiency in skeletal muscle causes hyperlipidemia and hepatosteatosis by impairing muscle lipid uptake and storage. Diabetes. 66 (9), 2387-2399 (2017).
  53. Gemmink, A., et al. Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: A super-resolution microscopy study in trained athletes and insulin resistant individuals. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1866 (2), 158852 (2021).
  54. Bergman, B. C., Hunerdosse, D. M., Kerege, A., Playdon, M. C., Perreault, L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia. 55 (4), 1140-1150 (2012).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved