JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

厚自由漂浮组织切片中星形胶质细胞区域体积和瓷砖的分析

Published: April 20th, 2022

DOI:

10.3791/63804

1Neuroscience Center, University of North Carolina, Chapel Hill, 2Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill

该协议描述了用于切片,染色和成像小鼠大脑的自由浮动组织切片的方法,随后详细描述了星形胶质细胞区域体积和星形胶质细胞区域重叠或平铺的分析。

星形胶质细胞具有惊人的形态复杂性,使它们能够与大脑中几乎每种类型的细胞和结构相互作用。通过这些相互作用,星形胶质细胞积极调节许多关键的大脑功能,包括突触形成、神经传递和离子稳态。在啮齿动物大脑中,星形胶质细胞在产后前三周的大小和复杂性增加,并建立不同的,不重叠的领土来平铺大脑。该协议提供了一种使用来自小鼠大脑的自由浮动组织切片分析星形胶质细胞区域体积和星形胶质细胞平铺的既定方法。首先,该方案描述了自由浮动组织切片的组织收集,冷冻切片和免疫染色的步骤。其次,该协议描述了星形胶质细胞区域体积和区域重叠体积的图像采集和分析,使用市售的图像分析软件。最后,本文讨论了这些方法的优点,重要考虑因素,常见陷阱和局限性。该协议要求脑组织具有星形胶质细胞的稀疏或马赛克荧光标记,并且设计用于与常见的实验室设备,共聚焦显微镜和市售的图像分析软件一起使用。

星形胶质细胞是精心分支的细胞,在大脑中执行许多重要功能1。在小鼠皮层中,桡骨神经胶质干细胞在胚胎晚期和产后早期阶段2中产生星形胶质细胞。在产后的前三周,星形胶质细胞的大小和复杂性增加,形成数千个直接与突触相互作用的细枝1。同时,星形胶质细胞与邻近的星形胶质细胞相互作用,以建立离散的、非重叠的区域来平铺大脑3,同时 通过 间隙连接通道4保持通信。在侮辱或损伤5之后的许多疾病状态中,星形胶质细胞的形态和组织被破坏,这表明这些过程对正常大脑功能的重要性。在正常发育、衰老和疾病期间分析星形胶质细胞的形态特性可以为星形胶质细胞生物学和生理学提供有价值的见解。此外,在遗传操作后分析星形胶质细胞形态是辨别控制星形胶质细胞形态复杂性的建立和维持的细胞和分子机制的宝贵工具。

由于星形胶质细胞分支的复杂性和星形胶质细胞平铺,对小鼠大脑中星形胶质细胞形态的分析很复杂。使用中间丝胶质纤维酸性蛋白(GFAP)作为星形胶质细胞特异性标记物的抗体染色仅捕获主要分支,并且大大低估了星形胶质细胞形态学复杂性1。其他细胞特异性标记物如谷氨酸转运蛋白1(GLT-1;....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有小鼠均按照北卡罗来纳大学教堂山分校的机构动物护理和使用委员会(IACUC)和比较医学部(IACUC协议编号21-116.0)使用。产后第21天(P21)的两性小鼠用于这些实验。以商业方式获得CD1小鼠(材料表),前面描述了MADM9的WT:WT和MADM9 WT:KO小鼠。

注意:该协议要求在稀疏的星形胶质细胞群体中具有荧光蛋白表达的大脑。荧光蛋白表达可以通过.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

图1给出了该协议的主要步骤和工作流程的示意图。 图2 显示了使用图像分析软件生成表面,生成靠近表面的斑点并生成凸起船体的关键步骤的屏幕截图。 图3 演示了该技术在确定星形胶质胶质细胞区域重叠/平铺中的应用。在 图4中,先前发表的手稿9 的代表性结果证明了该协议的应用。在 .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

该协议描述了一种用于分析小鼠皮层中星形胶质细胞区域体积和星形胶质细胞平铺的既定方法,详细介绍了从灌注开始并以图像分析结束的所有主要步骤。该协议要求在稀疏或马赛克的星形胶质细胞群中表达荧光蛋白的小鼠的大脑。除此要求外,任何年龄的小鼠都可以用于该方案,只需对灌注设置和添加到包埋模具中的冷冻介质体积进行微小的调整。虽然已经发表了用于分析脑组织切片

Log in or to access full content. Learn more about your institution’s access to JoVE content here

显微镜检查在UNC神经科学显微镜核心(RRID:SCR_019060)进行,部分由NIH-NINDS神经科学中心支持资助P30 NS045892和NIH-NICHD智力和发育障碍研究中心支持资助U54 HD079124资助。图 1 是使用 BioRender.com 创建的。图 4 中的图像和数据是在出版商的许可下从以前的出版物9 转载而来的。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
#5 forcepsRobozRS-5045
1 mL TB SyringeBecton Dickinson (BD)309623
10x TBS (tris-buffered saline)30 g Tris, 80 g NaCl, 2 g KCl, HCl to pH 7.4, dH2O to 1 L; store at room temperature (RT)
12-well plateGenesee Scientific25-106MP
1x TBS100 mL 10x TBS + 900 mL dH2O; store at RT
1x TBS + Heparin28.2 mg Heparin + 250 mL 1x TBS; store at 4 °C
24-well plateGenesee Scientific25-107MP
30% Sucrose in TBS15 g sucrose, 1x TBS to 50 mL; store at 4 °C
4% PFA (paraformaldehyde) in TBS40 g PFA, 4-6 NaOH pellets, 100 mL 10x TBS, dH2O to 1 L; store at 4 °C
Avertin0.3125 g tri-bromoethanol, 0.625 mL methylbutanol, dH2O to 25 mL; store at 4 °C; discard 2 weeks after making
Blocking and antibody buffer10% goat serum in TBST; store at 4 °C
CD1 miceCharles River022
Collection vial for brainsFisher Scientific03-337-20
Confocal acquisition softwareOlympousFV31S-SW
Confocal microscopeOlympusFV3000RS
CoverslipsFisher Scientific12544E
CryostatThermo ScientificCryoStar NX50
Cryostat bladeThermo Scientific3052835
DAPIInvitrogenD1306
Embedding moldPolysciences18646A-1
Freezing Medium2:1 30% sucrose:OCT; store at RT
GFP antibodyAves LabsGFP1010
GlycerolThermo Scientific158920010
Goat anti-chicken 488InvitrogenA-11039
Goat anti-rabbit 594InvitrogenA11037
Goat SerumGibco16210064
HeparinSigma-AldrichH3149
Hydrochloric acidSigma-Aldrich258148
ImarisBitplaneN/AVersion 9.8.0
MATLABMathWorksN/A
Metal lunch tinAQUARIUSN/AFrom Amazon, "DIY Large Fun Box"
MethylbutanolSigma-Aldrich152463
Micro Dissecting ScissorsRobozRS-5921
Mouting medium20mM Tris pH8.0, 90% Glycerol, 0.5% N-propyl gallate ; store at 4 °C; good for up to 2 months
NailpolishVWR100491-940
N-propyl gallateSigma-Aldrich02370-100G
O.C.T.Fisher Scientific23-730-571
OilOlympusIMMOIL-F30CCSpecific to microscope/objective
Operating Scissors 6"RobozRS-6820
Orbital platform shakerFisher Scientific88861043Minimum speed needed: 25 rpm
PaintbrushBogrinuoN/AFrom Amazon, "Detail Paint Brushes - Miniature Brushes"
ParaformaldehydeSigma-AldrichP6148
Pasteur pipet (5.75")VWR14672-608
Pasteur pipet (9")VWR14672-380
Potassium chlorideSigma-AldrichP9541-500G
Razor bladeFisher Scientific12-640
RFP antibodyRockland600-401-379
Sectioning medium1:1 glycerol:1x TBS; store at RT
SlidesVWR48311-703
Sodium chrloideFisher ScientificBP358-212
Sodium hydroxideSigma-AldrichS5881
SucroseSigma-AldrichS0389
TBST (TBS + Triton X-100)0.2% Triton in 1x TBS; store at RT
Transfer PipetVWR414004-002
Tri-bromoethanolSigma-AldrichT48402
Tris(hydroxymethyl)aminomethaneThermo Scientific424570025
Triton X-100Sigma-Aldrich93443
Triton X-100 (high-quality)Fisher Scientific50-489-120
XTSpotsConvexHullN/AN/Acustom XTension provide as supplementary material
Buffers and Solutions
10x TBSxx mM Tris, xx mM NaCl, xx mM KCl, pH 7.4
1x TBS
1x TBS + Heparinadd xx mg Heparin to xx mL of 1x TBS
4% PFA
30% Sucrose in TBS
Freezing Medium
Sectioning medium
TBST0.2% Triton in 1x TBS
Blocking and antibody buffer10% goat serum in 1x TBST
Mouting medium

  1. Stogsdill, J. A., et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature. 551 (7679), 192-197 (2017).
  2. Akdemir, E. S., Huang, A. Y., Deneen, B. Astrocytogenesis: where, when, and how. F1000Research. 9, (2020).
  3. Bushong, E. A., Martone, M. E., Jones, Y. Z., Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 22 (1), 183-192 (2002).
  4. Houades, V., et al. Shapes of astrocyte networks in the juvenile brain. Neuron Glia Biology. 2 (1), 3-14 (2006).
  5. Zuchero, J. B., Barres, B. A. Glia in mammalian development and disease. Development. 142 (22), 3805-3809 (2015).
  6. Srinivasan, R., et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron. 92 (6), 1181-1195 (2016).
  7. Testen, A., Kim, R., Reissner, K. J. High-resolution three-dimensional imaging of individual astrocytes using confocal microscopy. Current Protocols in Neuroscience. 91 (1), 92 (2020).
  8. Takano, T., et al. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature. 588 (7837), 296-302 (2020).
  9. Baldwin, K. T., et al. HepaCAM controls astrocyte self-organization and coupling. Neuron. 109 (15), 2427-2442 (2021).
  10. Amberg, N., Hippenmeyer, S. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. 2 (4), 100939 (2021).
  11. Dumas, L., et al. In utero electroporation of multiaddressable genome-integrating color (MAGIC) markers to individualize cortical mouse astrocytes. Journal of visualized experiments: JoVE. (159), e61110 (2020).
  12. Garcia-Marques, J., Nunez-Llaves, R., Lopez-Mascaraque, L. NG2-glia from pallial progenitors produce the largest clonal clusters of the brain: time frame of clonal generation in cortex and olfactory bulb. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 34 (6), 2305-2313 (2014).
  13. Clavreul, S., et al. Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nature Communication. 10 (1), 4884 (2019).
  14. O'Donnell, J., Ding, F., Nedergaard, M. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator. Current Sleep Medicine Reports. 1 (1), 1-8 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved