Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Dynamic light scattering (DLS) has emerged as a suitable assay for evaluating the particle size and distribution of intravenously administered iron-carbohydrate complexes. However, the protocols lack standardization and need to be modified for each iron-carbohydrate complex analyzed. The present protocol describes the application and special considerations for the analysis of iron sucrose.

Abstract

Intravenously administered iron-carbohydrate nanoparticle complexes are widely used to treat iron deficiency. This class includes several structurally heterogeneous nanoparticle complexes, which exhibit varying sensitivity to the conditions required for the methodologies available to physicochemically characterize these agents. Currently, the critical quality attributes of iron-carbohydrate complexes have not been fully established. Dynamic light scattering (DLS) has emerged as a fundamental method to determine intact particle size and distribution. However, challenges still remain regarding the standardization of methodologies across laboratories, specific modifications required for individual iron-carbohydrate products, and how the size distribution can be best described. Importantly, the diluent and serial dilutions used must be standardized. The wide variance in approaches for sample preparation and data reporting limit the use of DLS for the comparison of iron-carbohydrate agents. Herein, we detail a robust and easily reproducible protocol to measure the size and size distribution of the iron-carbohydrate complex, iron sucrose, using the Z-average and polydispersity index.

Introduction

Iron sucrose (IS) is a colloidal solution comprised of nanoparticles consisting of a complex of a polynuclear iron-oxyhydroxide core and sucrose. IS is widely employed to treat iron deficiency among patients with a wide variety of underlying disease states who do not tolerate oral iron supplementation or for whom oral iron is not effective1. IS belongs to the drug class of complex drugs as defined by the Food and Drug Administration (FDA), which is a class of drugs with complex chemistry commensurate with biologicals2. The regulatory evaluation of complex drug products may require additional orthogonal physicochemical me....

Protocol

1. Operating the machine

  1. Starting up the machine and software
    NOTE: Supplemental Figure S1A-D describes the steps for starting up the machine and software.
    1. Switch on the instrument at least 30 min before starting the measurements, and then start the PC.
    2. Double-click on the instrument software icon to start the program.
    3. Enter the username and password in the login window. Ensure that each user has their own account.

Representative Results

The method described was validated according to ICH Q2(R1)20, which involved the measurement of test solutions under varying conditions. The precision was only 0.5% RSD for the Z-average size, while a maximum of 3.5% RSD was calculated for the PDI. The mean results from different analysts and days only differed by 0.4% for the Z-average size and 1.5% for the PDI. Statistics were calculated from 12 measurements performed by two analysts on varying days. Neither changes in the test concentration in .......

Discussion

DLS has become a fundamental assay for the determination of the size and size distribution of nanoparticles for applications in drug development and regulatory evaluation. Despite advances in DLS techniques, methodologic challenges still exist regarding the diluent selection and sample preparation, which are especially relevant for iron-carbohydrate complexes in colloidal solutions. Importantly, DLS methods for iron-carbohydrate nanomedicines have not yet been studied extensively in the biological milieu (e.g., the plasm.......

Acknowledgements

None

....

Materials

NameCompanyCatalog NumberComments
Equipment
Zetasizer Nano ZSMalvernNAequipped with Zetasizer software 7.12, Helium Neon laser (633 nm, max. 4 mW) and 173° backscattering geometry
Materials
Disposable plastic cuvettes 
LLG-Disposable plastic cellsLLG labwareLLG-Küvetten, Makro, PS; Order number 9.406011
low-particle water (The use of freshly deionized and filtered (pore size 0.2 μm) water is recommended).
Microlitre pipette
Venofer 100 mg/5 mLVifor Pharma
Volumetric flask 25 mL
NanosphereThermo3020AParticle Standard
Software
Origin Pro v.8.5 Origin Lab Corporation

References

  1. Auerbach, M., Gafter-Gvili, A., Macdougall, I. C. Intravenous iron: A framework for changing the management of iron deficiency. Lancet Haematology. 7 (4), e342-e350 (2020).
  2. Generic drugs: FDA should make public its plans to issue and revise guidance on nonbiological complex drugs. US Government Accountability Office Available from: https://www.gao.go....

Explore More Articles

Dynamic Light ScatteringDLSParticle SizeIron carbohydrate ComplexesNanoparticlesPolydispersityIron SucroseSample PreparationMeasurement Procedure

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved