JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

使用数字液滴聚合酶链反应测量单细胞线粒体DNA拷贝数和异质性

Published: July 12th, 2022

DOI:

10.3791/63870

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus

在这里,我们提出了一种用于测量单细胞中绝对线粒体(mt)DNA拷贝数和mtDNA缺失异质水平的方案。

哺乳动物线粒体(mt)DNA是一种小的环状双链线粒体内DNA分子,编码电子传递链的13个亚基。与二倍体核基因组不同,大多数细胞含有更多的mtDNA拷贝,根据细胞类型,从不到100个拷贝到超过20万个拷贝不等。MtDNA拷贝数越来越多地被用作许多与年龄相关的退行性疾病和疾病的生物标志物,因此,mtDNA拷贝数的准确测量正在成为研究和诊断环境中的关键工具。mtDNA中的突变通常以单核苷酸多态性(SNP)或缺失的形式发生,可以存在于细胞内mtDNA的所有拷贝中(称为同质),也可以作为突变和WT mtDNA拷贝的混合物(称为异质)。异质性mtDNA突变是临床线粒体病理学的主要原因,无论是在罕见疾病中还是在越来越多的常见迟发性疾病(如帕金森病)中。确定细胞中存在的异质性水平是诊断罕见线粒体疾病和旨在了解线粒体可能发挥作用的常见迟发性疾病的研究的关键步骤。传统上,MtDNA拷贝数和异质性通过基于定量(q)PCR的测定或深度测序来测量。然而,最近引入的ddPCR技术为测量这两个参数提供了一种替代方法。与现有方法相比,它具有几个优点,包括能够测量绝对mtDNA拷贝数和足够的灵敏度,即使在低拷贝数下也能从单个细胞进行准确测量。这里介绍的是描述使用ddPCR测量单细胞中mtDNA拷贝数的详细方案,此后称为液滴生成PCR,可以选择同时测量具有mtDNA缺失的细胞中的异质性。还讨论了扩展该方法以测量具有mtDNA SNP的细胞中的异质性的可能性。

哺乳动物线粒体 (mt)DNA 是一种小的(约 16.5 Kb)环状 DNA 基因组,存在于线粒体基质中,编码 37 个基因,包括两个 rRNA、22 个 tRNA 和 13 个蛋白质编码基因1。与每个细胞包含每个基因的一个(单倍体)或两个(二倍体)拷贝的核基因组不同,mtDNA存在于每个细胞的线粒体中有多个拷贝,范围从数十个拷贝(例如,成熟的精子细胞)到数十万个拷贝(例如,卵母细胞)23。这种多拷贝性质的结果是mtDNA基因组中的突变,可能以单核苷酸多态性(SNP),缺失或重复的形式存在,可以在任何给定细胞中以不同的水平存在,占细胞总mtDNA群体的0%至100%。同一细胞中野生型和突变型mtDNA基因组的存在称为异质性,致病性异质性mtDNA突变是线粒体疾病的主要原因,几种常见的神经系统综合征与潜在的异质性mtDNA突变有关4

导致临床疾病的异质性mtDNA突变可能性的两个关键参数是异质水平和mtDNA拷贝数。许多异质突变表现出阈值效应,生化和临床表型仅在某个异质水平以上变得明显,通常约为80%5,随后随着异质性的进一步增加而恶化4。然而,考虑细胞中存在的mtDN....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有实验均遵循ARRIVE指南,并获得了剑桥大学动物福利伦理审查机构(AWERB)的批准。

注意:液滴生成之前的所有样品制备步骤必须在干净的PCR前工作区进行,最好尽可能在紫外线灭菌的柜子中进行。此处描述的方案使用特定的液滴生成PCR设备(参见 材料表),虽然通用方法应适用于其他系统,但建议参考制造商关于引物/探针浓度,PCR循环条件等的指南,因为?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

液滴产生后,可见一层透明的不透明液滴漂浮在每口井的油相顶部(图1B)。在对单细胞进行实验时,输入裂解物中存在去垢剂会对液滴形成产生不利影响。使用2.1.2.中描述的裂解方案,尽管最终样品中存在少量TWEEN-20残留量,但液滴产量仍可常规达到推荐水平10,000以上(图1C)。然而,使用其他裂解缓冲液,例如缓冲液RLT Plus,形成的液滴数量显着减.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

除上述细胞类型和物种外,此处描述的方案还适用于多种细胞类型和物种,尽管仔细优化新的检测设计将是确保在远离先前验证的引物/探针组合时保持方法准确性和可重复性的关键。在使用单细胞时,确保尽可能准确地进行样品收集(例如,在通过FACS分选细胞时使用严格的单细胞参数)以确保获得的结果真实反映单个细胞的结果,并确保所有准备工作都在干净的PCR前区域进行,以降低发生污染?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

感谢L Bozhilova博士对液滴生成PCR数据的统计分析的建议。感谢H Zhang博士提供用于生成 图3C图4B中的数据的卵母细胞。这项工作由剑桥大学医学研究委员会线粒体生物学部门(MC_UU_00015/9)的SPB进行,并由PFC持有的威康信托基金会首席研究奖学金(212219 / Z / 18 / Z)资助。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
50% Tween-20 solutionNovex3005
Automated droplet-generating oil Bio Rad1864110Commercial oil formulation used to generate the oil/droplet emulsion (used in Protocol Step 4.1)
C1000 PCR machine with deep-well blockBio Rad1851197PCR thermocycler equipped with a deep-well heating block, used for cell lysis (Protocol Step 2.1.2.) and PCR cycling (Protocol Step 5)
Collection plate cooling blockBio Rad12002819Cooling block that keeps samples chilled during droplet generation (used in Protocol step 4.3)
ddPCR 96-well plates Bio Rad1200192596-well plates pipet tips designed for use in the QX200 AutoDG droplet generator, used for sample preparation (Protocol step 3.4) and droplet collection (Protocol step 4.3)
ddPCR droplet reader oil Bio Rad1863004Commercial oil formulation used by the droplet reader (used in Protocol step 6.1)
ddPCR Supermix for Probes (no dUTP)Bio Rad1863023Commercial supermix for use in ddPCR experiments utilising probes (used in Protocol Step 3.3)
DG32 automated droplet generator cartridges Bio Rad1864108Microfluidic cartridges used in the QX200 AutoDG droplet generator to generate the oil/droplet emulsion (used in Protocol Step 4.3)
Fetal bovine serumGibco10270-106Qualified fetal bovine serum
Foil plate covers Bio Rad1814040Foil plate covers used to seal droplet collection plates after droplet generation (used in Protocol step 4.6)
HEK 293T cellsTakara632180Commercial subclone of the transformed human embryonic kidney cell line, HEK 293, expressing the SV40 Large-T antigen
HeLa cellsECACC93021013Human cervix epitheloid carcinoma cells
High glucose DMEMGibco133453644.5g/L D-Glucose, with L-glutamine and sodium pyruvate
Human cybridsUniversity of Miami
Mouse embryonic fibroblasts Newcastle UniversityImmortalized from C57Bl/6 mice
Nuclease-free waterAmbionAM9937
PCR plate sealsPierceSP-0027Clear adhesive plate seals, only used pre-droplet generation (foil seal must be used in step 4.6)
Pipet Tip Waste BinsBio Rad1864125Disposable collection bin used to collect discarded tips in the QX200 AutoDG droplet generator (used in Protocol step 4.3)
Pipet tips for AutoDG system Bio Rad1864120Filtered pipet tips designed for use in the QX200 AutoDG droplet generator (used in Protocol step 4.3)
Primary human dermal fibroblast cellsNewcastle Biobank
Primers/ProbesIDTN/AExact primer/probe sequences will be assay dependent. Primers and probes used in this study are given in Table 1
Proteinase K 20 mg/mL solutionAmbionAM2546
PX1 PCR plate sealerBio Rad1814000Applies foil seals to ddPCR sample plates after droplet generation (used in Protocol Step 4.6)
QX Manager softwareBio Rad12012172Droplet reader set up & analysis software (used in Protocol Steps 6 & 7)
QX200 AutoDG droplet generatorBio Rad1864101Automated microfluidic droplet generator (used in Protocol Step 4)
QX200 droplet readerBio Rad1864003Droplet reader (used in Protocol Step 6)
Trizma pre-set crystals pH 8.3SigmaT8943-100G

  1. Taanman, J. W. The mitochondrial genome: structure, transcription, translation and replication. Biochimica Biophysica Acta. 1410 (2), 103-123 (1999).
  2. Wai, T., et al. The role of mitochondrial DNA copy number in mammalian fertility. Biology of Reproduction. 83 (1), 52-62 (2010).
  3. D'Erchia, A. M., et al. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion. 20, 13-21 (2015).
  4. Stewart, J. B., Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews: Genetics. 16 (9), 530-542 (2015).
  5. Durham, S. E., Samuels, D. C., Cree, L. M., Chinnery, P. F. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A-->G. American Journal of Human Genetics. 81 (1), 189-195 (2007).
  6. Liu, H., et al. Wild-type mitochondrial DNA copy number in urinary cells as a useful marker for diagnosing severity of the mitochondrial diseases. PloS One. 8 (6), 67146 (2013).
  7. Filograna, R., et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Science Advances. 5 (4), (2019).
  8. Wang, Y., et al. The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecologic Oncology. 98 (1), 104-110 (2005).
  9. Boulet, L., Karpati, G., Shoubridge, E. A. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). American Journal of Human Genetics. 51 (6), 1187-1200 (1992).
  10. Lee, J., Hyeon, D. Y., Hwang, D. Single-cell multiomics: technologies and data analysis methods. Experimental and Molecular Medicine. 52 (9), 1428-1442 (2020).
  11. Taylor, S. C., Laperriere, G., Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports. 7 (1), 2409 (2017).
  12. Hindson, C. M., et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods. 10 (10), 1003-1005 (2013).
  13. Herbst, A., et al. Digital PCR quantitation of muscle mitochondrial DNA: age, fiber type, and mutation-induced changes. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences. 72 (10), 1327-1333 (2017).
  14. O'Hara, R., et al. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Research. 29 (11), 1878-1888 (2019).
  15. Diaz, F., et al. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Research. 30 (21), 4626-4633 (2002).
  16. Krishnan, K. J., Bender, A., Taylor, R. W., Turnbull, D. M. A multiplex real-time PCR method to detect and quantify mitochondrial DNA deletions in individual cells. Analytical Biochemistry. 370 (1), 127-129 (2007).
  17. Lowes, H., Pyle, A., Duddy, M., Hudson, G. Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion. 46, 307-312 (2019).
  18. Perier, C., et al. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms. Brain. 136, 2369-2378 (2013).
  19. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology. 49 (10), 1457 (2019).
  20. Espina, V., et al. Laser-capture microdissection. Nature Protocols. 1 (2), 586-603 (2006).
  21. Cree, L. M., et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nature Genetics. 40 (2), 249-254 (2008).
  22. Belmonte, F. R., et al. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions. Scientific Reports. 6, 25186 (2016).
  23. Samuels, D. C., Schon, E. A., Chinnery, P. F. Two direct repeats cause most human mtDNA deletions. Trends in Genetics. 20 (9), 393-398 (2004).
  24. Nissanka, N., Minczuk, M., Moraes, C. T. Mechanisms of mitochondrial DNA deletion formation. Trends in Genetics. 35 (3), 235-244 (2019).
  25. Macaulay, I. C., et al. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq. Nature Protocols. 11 (11), 2081-2103 (2016).
  26. Ludwig, L. S., et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 176 (6), 1325-1339 (2019).
  27. Rooney, J. P., et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods in Molecular Biology. 1241, 23-38 (2015).
  28. Kamitaki, N., Usher, C. L., McCarroll, S. A. Using droplet digital PCR to analyze allele-specific RNA expression. Methods in Molecular Biology. 1768, 401-422 (2018).
  29. Maeda, R., Kami, D., Maeda, H., Shikuma, A., Gojo, S. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Scientific Reports. 10 (1), 10821 (2020).
  30. Quan, P. L., Sauzade, M., Brouzes, E. dPCR: A Technology Review. Sensors (Basel). 18 (4), (2018).
  31. Lin, X., Huang, X., Urmann, K., Xie, X., Hoffmann, M. R. Digital loop-mediated isothermal amplification on a commercial membrane. ACS Sensors. 4 (1), 242-249 (2019).
  32. Li, Z., et al. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosensors and Bioelectronics. 177, 112952 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved