JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Bottom-up in vitro-metoder til analyse af den ultrastrukturelle organisation, membranomformning og krumningsfølsomhedsadfærd hos septiner

Published: August 17th, 2022

DOI:

10.3791/63889

1Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, 2Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 3Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 4Department of Chemical Engineering, Imperial College London, 5Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de microscopie électronique (IBPS-SME), 6Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité, 7Institute of Biotechnology, Czech Academy of Sciences, BIOCEV
* These authors contributed equally

Septiner er cytoskeletale proteiner. De interagerer med lipidmembraner og kan fornemme, men også generere membrankrumning på mikronskala. Vi beskriver i denne protokol bottom-up in vitro-metoder til analyse af membrandeformationer, krumningsfølsom septinbinding og septinfilament ultrastruktur.

Membranombygning forekommer konstant ved plasmamembranen og inden for cellulære organeller. For fuldt ud at dissekere miljøets rolle (ioniske tilstande, protein- og lipidsammensætninger, membrankrumning) og de forskellige partnere, der er forbundet med specifikke membranomformningsprocesser, foretager vi in vitro bottom-up-tilgange. I de senere år har der været stor interesse for at afsløre septinproteinernes rolle forbundet med større sygdomme. Septiner er essentielle og allestedsnærværende cytoskeletale proteiner, der interagerer med plasmamembranen. De er impliceret i celledeling, cellemotilitet, neuromorfogenese og spermiogenese, blandt andre funktioner. Det er derfor vigtigt at forstå, hvordan septiner interagerer og organiserer sig ved membraner for efterfølgende at inducere membrandeformationer, og hvordan de kan være følsomme over for specifikke membrankrumninger. Denne artikel har til formål at dechiffrere samspillet mellem ultrastrukturen af septiner på molekylært niveau og membranombygningen, der forekommer på mikronskala. Til dette formål blev spirende gær og pattedyrs septinkomplekser rekombinant udtrykt og renset. En kombination af in vitro-assays blev derefter brugt til at analysere selvmonteringen af septiner ved membranen. Understøttede lipiddobbeltlag (SLB'er), gigantiske unilamellare vesikler (GUV'er), store unilamellare vesikler (LUV'er) og bølgede substrater blev brugt til at studere samspillet mellem septin selvsamling, membranomformning og membrankrumning.

Septiner er cytoskeletale filamentdannende proteiner, der interagerer med lipidmembraner. Septiner er allestedsnærværende i eukaryoter og afgørende for mange cellulære funktioner. De er blevet identificeret som de vigtigste regulatorer for celledeling i spirende gær og pattedyr 1,2. De er involveret i membranomformningshændelser, ciliogenese3 og spermiogenese4. Inden for pattedyrceller kan septiner også interagere med actin og mikrotubuli 5,6,7 i et bindemiddel af Rho GT....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Bestemmelse af membranomformning ved hjælp af gigantiske unilamellare vesikler (GUV'er)

BEMÆRK: I dette afsnit genereres GUV'er for at efterligne de membrandeformationer, der muligvis induceres af septiner i en cellulær sammenhæng. Faktisk findes septiner i celler ofte på steder med mikrometerkrumninger. GUV'er har størrelser fra et par til snesevis af mikrometer og kan deformeres. De er således egnede til at analysere eventuelle septininducerede deformationer i mikrom.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

GUVs deformationer
Typiske konfokale fluorescensbilleder af GUV'er omformet efter inkubation med septiner vises i figur 3 under forhold, hvor septiner polymeriserer. Bare GUV'er (figur 3A) var perfekt sfæriske. Ved inkubation med mere end 50 nM spirende gærseptinfilamenter syntes vesiklerne deformerede. Op til en koncentration på 100 nM spirende gærseptinoktomerer syntes vesiklerne facetterede, og deformationerne forblev statiske og sving.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Som nævnt ovenfor er der anvendt en lipidblanding, der forbedrer PI (4,5) P 2-inkorporering i lipiddobbeltlaget og letter dermed septin-membraninteraktioner. Faktisk har vi vist andetsteds25, at spirende gærseptiner interagerer med vesikler på en PI (4,5) P2-specifik måde. Denne lipidsammensætning blev justeret empirisk fra screening af flere sammensætninger og anvendes nu i vid udstrækning af forfatterne. PI(4,5)P2 lipider skal håndteres omhyggeligt. Stamo.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vi takker Patricia Bassereau og Daniel Lévy for deres nyttige råd og diskussioner. Dette arbejde modtog støtte fra ANR (Agence Nationale de la Recherche) til finansiering af projektet "SEPTIME", ANR-13-JSV8-0002-01, ANR SEPTIMORF ANR-17-CE13-0014 og projektet "SEPTSCORT", ANR-20-CE11-0014-01. B. Chauvin er finansieret af Ecole Doctorale "ED564: Physique en Ile de France" og Fondation pour lea Recherche Médicale. K. Nakazawa blev støttet af Sorbonne Université (AAP Emergence). G.H. Koenderink blev støttet af Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO/OCW) gennem »BaSyC-Building a Synthetic Cell«. Gravitationstilskud (024.003.019). Vi takker Labex Cell....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1,2-dioleoyl-sn-glycero-3-phosphoethanolamineAvanti Polar Lipids850725
1,2-dioleoyl-sn-glycero-3-phospho-L-serineAvanti Polar Lipids840035
Bath sonicatorElmaElmasonic S10H
Bodipy-TR-Ceramideinvitrogen, Thermo Fischer scientific11504726
Chemicals: NaCl, Tris-HCl, sucrose, KCl, MgCl2, B-casein, chloroform, sodium cacodylate, tannic acid, ethanolSigma Aldrich
Confocal microscopenikonspinning disk or confocal
Critical point dryerLeica microsystemsCPD300
Deionized water generatorMilliQF1CA38083BMilliQ integral 3
Egg L-α-phosphatidylcholineAvanti Polar Lipids840051
Field Emission Gun SEM (FESEM)Carl ZeissGemini SEM500
Glutaraldehyde 25 %, aqueous solutionThermo Fischer scientific50-262-19
High vacuum grease, Dow corningVWR
IMOD softwarehttps://bio3d.colorado.edu/imod/software suite for tilted series image alignment and 3D reconstruction
Lacey Formvar/carbon electron microscopy gridsEloise01883-F
LipidsAvanti Polar Lipids
L-α-phosphatidylinositol-4,5-bisphosphateAvanti Polar Lipids840046
Metal evaporatorLeica microsystemsEM ACE600
NOA (Norland Optical Adhesives), NOA 71 and NOA 81Norland ProductsNOA71, NOA81
Osmium tetraoxyde 4%delta microscopies19170
OsmometerLöser15 M
Plasma cleanerAlcatelpascal 2005 SD
Plasma generatorElectron Microscopy Science
Plunge freezing equipmentleica microsystemsEMGP
Transmission electron microscopeThermofischerTecnai G2 200 kV, LaB6
Uranyl acetateElectron Microscopy Science22451this product is not available for purchase any longer
Wax plates, VitrexVWR

  1. Finger, F. P. Reining in cytokinesis with a septin corral. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 27 (1), 5-8 (2005).
  2. Barral, Y., Kinoshita, M. Structural insights shed light onto septin assemblies and function. Current Opinion in Cell Biology. 20 (1), 12-18 (2008).
  3. Hu, Q., et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science. 329 (5990), 436-439 (2010).
  4. Lin, Y. -. H., Kuo, Y. -. C., Chiang, H. -. S., Kuo, P. -. L. The role of the septin family in spermiogenesis. Spermatogenesis. 1 (4), 298-302 (2011).
  5. Addi, C., Bai, J., Echard, A. Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Current Opinion in Cell Biology. 50, 27-34 (2018).
  6. Spiliotis, E. T., Kesisova, I. A. Spatial regulation of microtubule-dependent transport by septin GTPases. Trends in Cell Biology. 31 (12), 979-993 (2021).
  7. Spiliotis, E. T., Nakos, K. Cellular functions of actin- and microtubule-associated septins. Current Biology: CB. 31 (10), 651-666 (2021).
  8. Salameh, J., Cantaloube, I., Benoit, B., Poüs, C., Baillet, A. Cdc42 and its BORG2 and BORG3 effectors control the subcellular localization of septins between actin stress fibers and microtubules. Current Biology: CB. 31 (18), 4088-4103 (2021).
  9. Ewers, H., Tada, T., Petersen, J. D., Racz, B., Sheng, M., Choquet, D. A septin-dependent diffusion barrier at dendritic spine necks. PloS One. 9 (12), 113916 (2014).
  10. Myles, D. G., Primakoff, P., Koppel, D. E. A localized surface protein of guinea pig sperm exhibits free diffusion in its domain. The Journal of Cell Biology. 98 (5), 1905-1909 (1984).
  11. Luedeke, C., Frei, S. B., Sbalzarini, I., Schwarz, H., Spang, A., Barral, Y. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. The Journal of Cell Biology. 169 (6), 897-908 (2005).
  12. Gilden, J. K., Peck, S., Chen, Y. -. C. M., Krummel, M. F. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. The Journal of Cell Biology. 196 (1), 103-114 (2012).
  13. Dolat, L., Hu, Q., Spiliotis, E. T. Septin functions in organ system physiology and pathology. Biological Chemistry. 395 (2), 123-141 (2014).
  14. Angelis, D., Spiliotis, E. T. Septin mutations in human cancers. Frontiers in Cell and Developmental Biology. 4, 122 (2016).
  15. Takehashi, M., et al. Septin 3 gene polymorphism in Alzheimer's disease. Gene Expression. 11 (5-6), 263-270 (2004).
  16. Shuman, B., Momany, M. Septins from protists to people. Frontiers in Cell and Developmental Biology. 9, 824850 (2022).
  17. Bertin, A., et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proceedings of the National Academy of Sciences of the United States of America. 105 (24), 8274-8279 (2008).
  18. Iv, F., et al. Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. Journal of cell science. 134 (15), (2021).
  19. Beber, A., et al. Membrane reshaping by micrometric curvature sensitive septin filaments. Nature communications. 10 (1), 420 (2019).
  20. Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P., Gladfelter, A. S. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. The Journal of Cell Biology. 213 (1), 23-32 (2016).
  21. Patzig, J., et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife. 5, 17119 (2016).
  22. Szuba, A., et al. Membrane binding controls ordered self-assembly of animal septins. eLife. 10, 63349 (2021).
  23. Tanaka-Takiguchi, Y., Kinoshita, M., Takiguchi, K. Septin-mediated uniform bracing of phospholipid membranes. Current Biology: CB. 19 (2), 140-145 (2009).
  24. Bertin, A., et al. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. Journal of Molecular Biology. 404 (4), 711-731 (2010).
  25. Beber, A., et al. Septin-based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles. Cytoskeleton. 76 (4,5), 92-103 (2019).
  26. Mastronarde, D. N., Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. Journal of Structural Biology. 197 (2), 102-113 (2017).
  27. Kremer, J. R., Mastronarde, D. N., McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology. 116 (1), 71-76 (1996).
  28. Nania, M., Foglia, F., Matar, O. K., Cabral, J. T. Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale. 9 (5), 2030-2037 (2017).
  29. Nania, M., Matar, O. K., Cabral, J. T. Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter. 11 (15), 3067-3075 (2015).
  30. Svitkina, T. M., Borisy, G. G. Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods in Enzymology. 298, 570-592 (1998).
  31. Franck, A., et al. Clathrin plaques and associated actin anchor intermediate filaments in skeletal muscle. Molecular Biology of the Cell. 30 (5), 579-590 (2019).
  32. Elkhatib, N., et al. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science. 356 (6343), (2017).
  33. Stokroos, I., Kalicharan, D., Van Der Want, J. J., Jongebloed, W. L. A comparative study of thin coatings of Au/Pd, Pt and Cr produced by magnetron sputtering for FE-SEM. Journal of Microscopy. 189, 79-89 (1998).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved